• Title/Summary/Keyword: poly(${\varepsilon}$-caprolactone)

Search Result 121, Processing Time 0.022 seconds

Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications (폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향)

  • Ezzati, Peyman;Ghasemi, Ismaeil;Karrabi, Mohammad;Azizi, Hamed;Fortelny, Ivan
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Synthesis and Characterization of Biodegradable Elastic Hydrogels Based on Poly(ethylene glycol) and Poly(${\varepsilon}-caprolactone$) Blocks

  • Im, Su-Jin;Choi, You-Mee;Subramanyam, Elango;Huh, Kang-Moo;Park, Ki-Nam
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Novel biodegradable elastic hydrogels, based on hydrophilic and hydrophobic polymer blocks, were synthesized via the radical crosslinking reaction of diacrylates of poly(ethylene glycol) (PEG) and poly(${\varepsilon}-caprolactone$) (PCL). PEG and PCL diols were diacrylated with acryloyl chloride in the presence of triethylamine, with the reaction confirmed by FT-IR and $^1H-NMR$ measurements. The diacrylate polymers were used as building-blocks for the syntheses of a series of hydro gels, with different block compositions, by simply varying the feed ratios and molecular weights of the block components. The swelling ratio of the hydrogels was controlled by the balance between the hydrophilic and hydrophobic polymer blocks. Usually, the swelling ratio increases with increasing PEG content and decreasing block length within the network structure. The hydrogels exhibited negative thermo-sensitive swelling behavior due to the coexistence of hydrophilic and hydrophobic polymer components in their network structure, and such thermo-responsive swelling/deswelling behavior could be repeated using a temperature cycle, without any significant change in the swelling ratio. In vitro degradation tests showed that degradation occurred over a 3 to 8 month period. Due to their biodegradability, biocompatibility, elasticity and functionality, these hydrogels could be utilized in various biomedical applications, such as tissue engineering and drug delivery systems.

Morphological, Mechanical and Rheological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate/Poly$({\varepsilon}-caprolactone)$ Ternary Blends

  • Hong, John-Hee;Song, Ki-Heon;Lee, Hyung-Gon;Han, Mi-Sun;Kim, Youn-Hee;Kim, Woo-Nyon
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The effects of poly($({\varepsilon}$-caprolactone) (PCL) on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) blends were studied. Blends of ABS/PC (70/30, wt%) with PCL as a compatibilizer were prepared by a twin screw extruder. From the glass transition temperature $(T_g)$ results of the ABS/PC blends with PCL, the $T_g$(PC) of the ABS/PC (70/30) blends decreased with increasing PCL content. From the results of the morphology of the ABS/PC (70/30) blends with PCL, the phase separation between the ABS and PC phases became less significant after adding PCL in the ABS/PC blends. In addition, the morphological studies of the ABS/PC blends etched by NaOH indicated that the shape of the droplet was changed from regular round to irregular round by adding PCL in the ABS/PC blends. These results for the mechanical properties of the ABS/PC blends with PCL indicated that the tensile, flexural and impact strengths of the ABS/PC (70/30) blends peaked at a PCL content of 0.5 phr. From the results for the rheological properties of the ABS/PC (70/30) blends with PCL content, the storage modulus, loss modulus and complex viscosity increased at PCL content up to 5 phr. From the above results of the $T_g$, mechanical properties, morphology and complex viscosity of the ABS/PC blends with PCL, it was concluded that the compatibility was increased with PCL addition in the ABS/PC (70/30, wt%) blends and that the optimum concentration of PCL as a compatibilizer is 0.5 phr.

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Influence of Surface Treatment of SiO$_2$ and Stirring Rate on Fragrant Oil Release Behavior of Poly($\varepsilon$-caprolactone) Microcapsules (실리카의 표면 처리와 교반 속도가 폴리카프로락톤 마이크로캡슐의 향유 방출 거동에 미치는 영향)

  • 박수진;양영준;이재락;서동학
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.464-469
    • /
    • 2003
  • In this work, the fragrant oil release behavior of poly($\varepsilon$-caprolactone) (PCL) microcapsules containing SiO$_2$ was investigated. The SiO$_2$ was chemically treated in 10, 20, and 30 wt% hydrochloric acid and sodium hydroxide. The acid and base values were determined by Boehm's titration technique and $N_2$/77 K adsorption isotherm characteristics, the specific surface area and total pore volume were studied by BET. The PCL microcapsules containing SiO$_2$ and fragrant oil were prepared by oil-in-water (o/w) emulsion solvent evaporation method. The shape and surface of PCL microcapsules were observed using image analyzer and scanning electron microscope (SEM). The fragrant oil release behavior of PCL microcapsules was characterized using UV/vis. spectra. The average diameters of PCL microcapsules were decreased from 35 to 21 $\mu$m with increasing stirring rate. It was found that in the case of acidic treatment the fragrant oil adsorption capacity and release rate were increased due to the increase of specific surface area and acid value. In the case of basic treatment, the fragrant oil adsorption capacity and release rate were decreased due to the decrease of sp ecific surface area and the increase of acid-base interactions between SiO$_2$-NaOH and fragrant oil with increasing base value of SiO$_2$.

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.

Preparation and Properties of Waterborne Polyurethanes Based on Ttiblock Glycol $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$ for Water Vapor Permeable Coatings: Effect of Soft Segment Content

  • Kwak, Yong-Sil;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.153-158
    • /
    • 2002
  • A series of waterborne polyurethanes (WBPU) were prepared from 4,4-dicyclohexylmethane diisocyanate ($H_{12}$MDI),2,2-bis(hydroxylmethyl) propionic acid (DMPA), othylenediarnine (EDA), triethylamine (TEA), and triblock glycol [TBG, ($\varepsilon$-caprolactone)$_{4.5}$-poly(tetramethylene ether) glycol (MW= 2000)-($\varepsilon$-caprolactone)$_{4.5}$: $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$, MW=3000] as a soft segment. Two melting peaks of TBG at about 14$^{\circ}C$ and 38$^{\circ}C$ were observed indicating the presence of two different crystalline domains composed of CL and PTMG dominant component. The effect of soft segment content (60-75 wt%) on the colloidal properties of dispersion, and thermal and mechanical properties of WBPU films, the water vapor permeability (WVP) and water resistance (WR) of WBPU-coated Nylon fabrics, and the adhesive strength of WBPU- coated layer and Nylon fabrics was investigated. As soft segment contents increased, the water vapor permeability of WBPU- coated Nylon fabrics increased from 3615 to 4502 g/$m^2$day, however, the water resistances decreased from 1300 to 500 mm$H_2$O.O.

Drug Release from Bioerodible Hydrogels Composed of $Poly-{\varepsilon}-Caprolactone/poly(Ethylene{\;}glycol)$ Macromer Semiinterpenhetrating Polymer Networks

  • Kim, Sung-Ho;Ha, Jeong-Hun;Jung, Yong-Jae;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.18-21
    • /
    • 1995
  • Poly(ethylene glycol)(PEG) macrocers teminated with acrylate groups and semi-interpenetrating polymer networks (IPNs) composed of poly-.epsilon.-capolactone(PCL) and PEG macromer were syntheswized with the aim of obtaining a bioerodible hydrogel that could be used to release drugs for implantable delivery system. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Non-crosslinked PCL chains were interpenetrated into the cross-linked three-dimensions networks of PEG. The IPNs, largw drug loading lower concentration of PEG macromer in the IPNs concentration and the higher molecular weight of PEG macromer. Also, 5-FU was more fast released than hydrocortisone to the increased water solubility.

  • PDF

Preparation of Porous Poly($\varepsilon$-caprolactone) Filament Via Electrospinning (전기 방사를 이용한 PCL Filament의 제조)

  • 김형준;길명섭;정윤호;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.169-170
    • /
    • 2003
  • 최근에 전기방사를 이용한 서브마이크로(submicro) 직경을 가진 섬유로 구성된 부직포 제조에 대한 관심이 집중 되어져 왔다[1,2]. 그러나 지금까지 전기방사기술에 대한 활발한 연구에도 불구하고, 전기방사를 이용하여 필라멘트를 제조한 결과는 보고되지 않았다. 본 실험에서는 전기방사 공정을 기초로 한 복합적인 방사체계를 이용하여 다공성 필라멘트를 제조하고자 한다. (중략)

  • PDF