• Title/Summary/Keyword: pollution monitoring

Search Result 1,029, Processing Time 0.028 seconds

Monitoring System of Coastal Environment Changes due to the Construction on the Sea (해상공사로 인한 연안환경 모니터링시스템)

  • Jung, Tae-Sung;Kim, Sung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • An integrated real-time monitoring software for coastal environment has been developed by using GUI. The system consists of modeling module, real-time monitoring module, and post-processing module of the modeling and monitoring results. The system was applied to a port construction site. The main purpose for the system is to setup the information system that user can obtain the environmental information easily and quickly. The system can be used to monitor environmental changes due to construction activities in coastal waters and to assess environmental impacts accurately in real-time. In conclusion, the system will be a good tool for finding out countermeasures to lessen water pollution and clean seawater.

  • PDF

A Study on Establishment of Emission Gas Monitoring System for Major Port Cities (주요 항만도시의 배출가스 모니터링 시스템 구축방안 연구)

  • Kim, U-Seon;Cheon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.55-56
    • /
    • 2018
  • In order to construct an efficient monitoring system for major port cities in Korea, the first step to build and manage related laws and institutional infrastructure with strengthen the cooperation of the relevant agencies, regional port authorities, and port corporations. Second, for the management of air pollutants emitted by ports, a management system should be established through systematic inventory source inventory and real-time monitoring system. Third, active countermeasures should be established to reduce the emission of air pollutants by sources such as ships, harbor equipment, and trucks. This will improve the air quality of major port cities and move them to clean port cities.

  • PDF

Summarize Water-soluble Ions of $PM_{2.5}$ in Northeastern Asia

  • Z. He;Seong Y. Ryu;Kim, Jeong E.;K. O. Ogunjobi;Kim, Young J.
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.400-401
    • /
    • 2003
  • Atmospheric fine aerosol particles play an important role in controlling a number of atmospheric processes, such as the deposition of different compounds, the optical properties etc. (Molnar et al., 1999). In this report, water-soluble species of PM$_{2.5}$ obtained from simultaneous measurements at four Asia sites (Beijng (39.56$^{\circ}$N, 116.17$^{\circ}$E), China; Gwangju (35.10$^{\circ}$N, 126.53$^{\circ}$E), South Korea; Kyoto (35.01$^{\circ}$N, 135.44$^{\circ}$E), Japan; and Ulan-Bator (47.55$^{\circ}$N, 106.52$^{\circ}$E), Mongolia) during the periods of 14-22 August, 30 October-06 November 2000, 14-21 January 2001, 23 July-02 August and 05-16 November 2002, within the framework of an APN (The Asia-Pacific Network for Global Change Research) project are reported. Ion components in 23 July-02 August 2002 were not obtained because of the technical problem of equipments.s.

  • PDF

Feasibility Study for Derivation of Tropospheric Ozone Motion Vector Using Geostationary Environmental Satellite Measurements (정지궤도 위성 대류권 오존 관측 자료를 이용한 대류권 이동벡터 산출 가능성 연구)

  • Shin, Daegeun;Kim, Somyoung;Bak, Juseon;Baek, Kanghyun;Hong, Sungjae;Kim, Jaehwan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1069-1080
    • /
    • 2022
  • The tropospheric ozone is a pollutant that causes a great deal of damage to humans and ecosystems worldwide. In the event that ozone moves downwind from its source, a localized problem becomes a regional and global problem. To enhance ozone monitoring efficiency, geostationary satellites with continuous diurnal observations have been developed. The objective of this study is to derive the Tropospheric Ozone Movement Vector (TOMV) by employing continuous observations of tropospheric ozone from geostationary satellites for the first time in the world. In the absence of Geostationary Environmental Monitoring Satellite (GEMS) tropospheric ozone observation data, the GEOS-Chem model calculated values were used as synthetic data. Comparing TOMV with GEOS-Chem, the TOMV algorithm overestimated wind speed, but it correctly calculated wind direction represented by pollution movement. The ozone influx can also be calculated using the calculated ozone movement speed and direction multiplied by the observed ozone concentration. As an alternative to a backward trajectory method, this approach will provide better forecasting and analysis by monitoring tropospheric ozone inflow characteristics on a continuous basis. However, if the boundary of the ozone distribution is unclear, motion detection may not be accurate. In spite of this, the TOMV method may prove useful for monitoring and forecasting pollution based on geostationary environmental satellites in the future.

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Research on Domestic Driving Pattern for International Standardization of Light-duty Vehicles Emission Test Method (소형차 배출가스 시험방법 국제 표준화를 위한 국내 주행패턴 연구)

  • Choi, Kee-Choo;Park, Jun-Hong;Lee, Jong-Tae;Kim, Jeong-Soo;Lee, Kyu-Jin;Yi, Yong-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.1
    • /
    • pp.31-43
    • /
    • 2012
  • Domestic road type-and period-specific driving pattern measurement was required as Korea's participation in developing "Worldwide harmonized light-duty vehicle emission test procedure (WLTP/DHC)" studied by UN WP29. This study measured road driving data reflecting road and traffic conditions of Korea, and analyzed seven types of representative road type-and period-specific driving patterns with driving pattern standardization methodology proposed by WP29. PAMS (Portable Activity Monitoring Systems) equipment was used to collect enormous (35,410km) road driving data. There are significant difference among seven derived driving patterns.

A Study on the Comparison of Emission Factor Method and CEMS (Continuous Emission Monitoring System) (배출계수법과 연속자동측정법에 의한 배출량 비교 연구)

  • Jang, Kee-Won;Lee, Ju-Hyoung;Jung, Sung-Woon;Kang, Kyoung-Hee;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.410-419
    • /
    • 2009
  • Generally, air pollutant emission at workplace is estimated by two methods: indirect methods using emission factors and direct methods based on CEMS (Continuous Emission Monitoring System). CAPSS (Clean Air Policy Support System) is a representative indirect method and the national air pollutant database of Korea. However, characteristics of some workplaces may create a gap between CAPSS and CEMS data. For improving of emission data accuracy, emission data of CEMS (named CleanSYS) equipped at 138 target workplaces were compared with those of CAPSS. As a result, $SO_x$ and $PM_{10}$ emission levels obtained by CAPSS were lower than those of CleanSYS. $SO_x$ and $PM_{10}$emission ratios were 61.5% and 71.2% lower respectively, showing the biggest gaps. On the other hand, $NO_x$ emission of CAPSS was higher by 10.4%. $SO_x$ showed the biggest difference in 'Energy industry combustion' and $NO_x$ did in 'Production Process' within the SCC category. $PM_{10}$ presented a large gap in 'Manufacturing industry combustion.' The differences in $SO_x$ between the two systems occurred because some large-size facilities lack pollution controllers or efficient pollution controllers. Based on this study, CAPSS emission database of Korea will improve accuracy through adopting CEMS emission system, which enables more efficient national atmospheric policies and workplace management.

A Study on Air Quality and Monitoring System in Busan (부산시의 대기오염과 측정망(감시망)에 관한 고찰)

  • 박재림
    • Journal of Environmental Health Sciences
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1975
  • Air pollutants were measured to get useful data in preventing and controlling the pollution at industrial and semi-industrial, commercial, cross-road and residential areas by season in Busan from September 1973 to June 1974. Teated were dustfalls(ton/$km^2$/month)by Deposit Gauge method, sulfuric anhydride(mg $SO_3/day/100cm^2 PbO_2$) by Lead Peroxide candle method. The relations between pollution and metherologlcal factors and source of pollution were discussed, The findings are as follows: 1. The mean value of dustfalls was 24.8 tons rangi~ng from 12.5 tons to 44.5 tons. The highest amount of dustfalls of 29.0 tons was measured in crossroad areas while the 1oeest of 22.7 tons in commercial areas, and Winter the highest of 27.7 tons while in Spring the lowest of 21.2 tons. 2. The mean value of water soluble substances was 31.7 per cent, and seasonal variation of pH was shown as 4.20 in Autumn, 3.85 in Summer and 2.76 in Winter. 3. The mean value of sulfuric anhydride was 1.54mg ranging from 0.197mg to 4.162 mg. The highest concentration of sulfuric anhydride of 2.03mg was detected in cross-road areas while thelowest of 1.23mg in residential areas, and Summer the highest of 2.18mg while in Spring the lowest of 1.09mg(0. 92mg in Nov. 1973) 4. Dustfalls are more with the decreased of relative humidity and precipitation while concentrat:on of sulfuric anhydrides are more with the increased of relative humidity. 5. There is a probability of occuring chronic symptoms(respiratory and others) as the dustfalls with 24.8 tons and sulfuric anhydride with 1.54mg in Busan. According to this, it is the time to discuss monitoring system and systematic preventing methods.

  • PDF

Spatial Distribution of Air Pollution in the Ulsan Metropolitan Region (울산지역 대기오염 공간분포)

  • Oh, Inbo;Bang, Jin-Hee;Kim, Soontae;Kim, Eunhye;Hwang, Mi-Kyoung;Kim, Yangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.394-407
    • /
    • 2016
  • The spatial air pollution distribution of the Ulsan metropolitan region (UMR) was analyzed using monitoring data and high-resolution numerical simulations. A three-year (2011~2014) analysis for the average concentrations from the 13 air quality monitoring sites in the UMR showed that $SO_2$ and $PM_{10}$ levels in industrial regions were much higher than those in other regions, whereas spatial differences of $NO_2$ and CO concentrations were not significant. In particular, elevated $O_3$ concentrations were clearly found at urban sites near petrochemical complex area. Results from high-resolution simulations by CMAQ model performed for four months of 2012 showed large spatial variations in grid-average pollutant concentrations between industrial areas and other areas in the UMR, which displayed significant changes with wind pattern by season. It was noted that the increases of $SO_2$ and $PM_{10}$ levels were limited in costal industrial areas or over the area nearby the sea in all seasons. Modeled $O_3$ concentrations were quite low in industrial areas and main urban roads with large $NO_x$ emissions. However, the model presented that all pollutant concentrations were significantly increased in the urban residential areas near the industrial complexes in summer season with increase of southerly wind.

Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads (수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.