• Title/Summary/Keyword: pollution map for water quality

Search Result 21, Processing Time 0.023 seconds

Implementations of Remote Sensing, GIS, and GPS for Water Resources and Water Quality Monitoring

  • Wu, Mu-Lin;Chen, Chiou-Hsiung;Liu, Shiu-Feng;Wey, Jiun-Sheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1191-1193
    • /
    • 2003
  • Water quantity and quality monitoring at Taipei Watershed Management Bureau (WRATB) is not only a daily business but also a long term job. WRATB is responsible for providing high quality drinking water to about four millions population in Taipei. The quality of drinking water provided by WRATB is among one of the best in Taiwan. The total area is 717 square kilometers. The water resource pollution is usually divided into two categories, point source pollution and nonpoint source pollution. Garbage disposal is the most important component of the point source pollution, especially those by tourist during holidays and weekends. Pesticide pollution, fertilizer pollution, and natural pollution are the major contributions for nonpoint source pollution. The objective of this paper is to implement remote sensing, geographic information systems, and global positioning systems to monitor water quantity and water quality at WRATB. There are 12 water quality monitoring stations and four water gauge stations at WRATB. The coordinates of the 16 stations were determined by GPS devices and created into the base maps. MapObjects and visual BASIC were implemented to create application modules for water quality and quantity monitoring. Water quality of the two major watersheds at WRATB was put on Internet for public review monthly. The GIS software, ArcIMS, can put location maps and attributes of all 16 stations on Internet for general public review and technical implementations at WRATB. Inquiry and statistic charts automatic manipulations for the past 18 years are also available. Garbage disposal by community and tourist were also managed by GIS and GPS. The storage, collection, and transportation of garbage were reviewed by ArcMap file format. All garbage cart and garbage can at WRATB can be displayed on the base maps. Garbage disposal by tourist during holidays and weekends can be managed by a PDA with a GPS device and a digital camera. Man power allocation for tourist garbage disposal management can be done in an integration of GIS and GPS. Monitoring of water quality and quantity at WRATB can be done on Internet and by a PDA.

  • PDF

A Technology for Water Pollution Diffusion Prevention based on Web Map

  • Shin, Jin Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.65-71
    • /
    • 2017
  • An integrated water environment management system is necessary in improving water quality, properly allocating water resources, and supporting socio-economic development. Specifically, water quality management system using web map can be an efficient approach to accomplish this system. This paper aims to construct a dynamic water quality management system to reflect a water environment management system which includes three sub-models with consideration of their interrelationships (a socio-economic model based on dynamic Input-Output model, a water resources cycle model, and a water pollutants flow model). Based on simulation, the model can precisely estimate trends of water utilization, water quality, and economic development under certain management targets, and propose an optimal plan. This study utilized the model to analyze the potential of using reclaimed water to accomplish local water environment management and sustainable development plan while exploring the applicable approaches. This study indicates that the constructed water environment management system can be effective and easily adopted to assess water resources and environment while improving the trade-off between economic and environment development, as well as formulate regional development plan.

Water Quality Management System for a Farm Village Stream -watershed monitoring and the system design- (농촌마을 하천의 수질관리 시스템 - 시험유역 조사 및 시스템 설계 -)

  • 정하우;최진용
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.2
    • /
    • pp.109-117
    • /
    • 1996
  • The purpose of this study Is to develop water quality management system fort a farm village stream. The framework design of the system and the ecological monitoring of a test watershed were carried out, The system consists of GIS(Geographic Information System ), database, pollution source management, water quality and hydrologic analysis. Suri watershed located on Idong, Yongin city, Kyunggi Province, was selected as the test watershed for the application of the system. The fifteen's monitoring stations were chooses at up- and down-stream of the watershed. The results of an aquatic ecological monitoring were analyzed by the GPI(Group Pollution Index) method. The GPI revealed that water quality was varied within the stream. GPI and DO map for the watershed stream were developed, These maps facilitated to analyze the spatial distribution of the water quality.

  • PDF

Water Quality Management System at Mok-hyun Stream Watershed Using RS and GIS

  • Lee, In-Soo;Lee, Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.63-69
    • /
    • 1999
  • The purpose of this study is to develop Water Quality Management System(WQMS), which performs calculating pollutant discharge and forecasting water quality with water pollution model. Operational water quality management requires not only controlling pollutants but acquiring and managing exact information. A GIS software, ArcView was used to enter or edit geographic data and attribute data, and MapObject was used to customize the user interface. PCI, a remote sensing software, was used for deriving land cover classification from 20 m resolution SPOT data by image processing. WQMS has two subsystems, Database Subsystem and Modelling subsystem. Database subsystem consisted of watershed data from digital map, remote sensing data, government reports, census data and so on. Modelling subsystem consisted of NSPLM(NonStorm Pollutant Load Model)-SPLM(Storm Pollutant Load Model). It calculates the amount of pollutant and predicts water quality. This two subsystem was connected through graphic display module. This system has been calibrated and verified by applying to Mokhyun stream watershed.

  • PDF

Application of Self-Organizing Map for the Characteristics Analysis of Rainfall-Storage and TOC Variation in a Lake (호소수의 강우-저류량 및 TOC변동 특성분석을 위한 자기조직화 방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Jung, Woo Cheol;Park, Sung Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.611-617
    • /
    • 2008
  • It is necessary to analysis the data characteristics of discharge and water quality for efficient water resources management, aggressive alternatives to inundation by flood and various water pollution accidents, the basic information to manage water quality in lakes and to make environmental policy. Therefore, the present study applied Self-Organizing Map (SOM) showing excellent performance in classifying patterns with weights estimated by self-organization. The result revealed five patterns and TOC versus rainfall-storage data according to the respective patterns were depicted in two-dimensional plots. The visualization presented better understanding of data distribution pattern. The result in the present study might be expected to contribute to the modeling procedure for data prediction in the future.

Development of a user-friendly information system for river water quality using Web GIS (Web GIS를 이용한 수요자 중심의 하천수질 정보시스템 구현)

  • 엄정섭;신소은
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.45-59
    • /
    • 2002
  • The author argues that the current Government Information System for river water quality appears to be non-user friendly due to lack of the cartographic representation for the field monitoring data. Acknowledging these constraints, an operational, user-friendly information system has been developed by combining Internet technology with GIS. A digital map for water quality has been generated by overlaying monitoring data on existing cartographic data such as road, topography and administrative boundary etc. A user interface was designed to address the need to querry the large spatial databases by non-GIS and non-environmental experts. The system has been checked experimentally and enabled the users to querry data required simply. And detailed visual maps for water quality can be generated over large areas quickly and easily. A visual mapping system for water quality was developed by reframing the monitoring data as graphic symbols and it was ideally suited to exploring area-wide water quality at a user-friendly manner due to extensibility and scalability along the various survey points. This system based on Web GIS could be accessed anywhere if internet is available. It would play a crucial role in improving the quality of public information service if it is operationally introduced into the Government since the highly user-friendly interface provides a completely new means for disseminating information far water pollution in a visual and interactive manner to the general public.

  • PDF

Biiological Analysis of Water Quality from the Water System of Namcheon River, Kyungsan (경상남천수계의 생물학적 수질판정)

  • Suh, Younbg Hee;Sang Ock Park
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.1
    • /
    • pp.46-53
    • /
    • 1990
  • Analyzing the water quality biologically by the biotic index ($\beta$) of Beck-Tsuda method, for four sites of the water system of Namcheon River which reaches a length of 19.5km and flows through the kyungsan-town and Namcheon-myun in Kyungsan-gun of the suburbs of Taegu and extends to the Gumho-river on the lower, the results are summarized as follows: 1) An indicator species collected from the water system of Namcheon River comprises 78 species. Among them, 27 species are intolerant species and 51 species are tolerant species to water pollution. 2) The water of 2 sites, Weondong-bridge, Sanjeon-iron bridge was clearly water, oligosaprobic zone. The water of Youngdae-bridge was slightly polluted water, $\beta$-measosaprobic zone. But the water of Maehoildong bridge was severely polluted water, polysaprobic zone. 3) The Namcheon River was mainly polluted with sewage from the kyungsan town, with industrial wastes and products from many factories surviving the town. 4) The pH wate system of Namcheon River was alkalescent. 5) The map showing a class of water quality analyzed biologically was also prepared for each site of the water system of Namcheon River, Kyungsan. 6) It is requested that a waste water disposal plant should be established near Youngdae-bridge and Maehoildong-bridge respectively.

  • PDF

A Study on the Quality Checking for Landcover Map (토지피복도의 품질 검증에 관한 연구)

  • Lee, Yong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.303-309
    • /
    • 2008
  • Landcover map can use to establish basic national environment policy as main data predicting living place, counting pollution like a atmosphere, water and forest part. During the 1998-2005 years, Korean government made landcover maps using satellite image for part of south Korea. Landcover maps are offered free for public purpose to university and institute. So, it used basic data for policy and research parts. There are some problems for application parts because of inconsistency. So, in this study, to estimate accuracy of source data by quality checking for landcover maps. As a result, there are some errors like classification inconsistencies. So, it need verification process for landcover maps.

Applicability of unmanned aerial vehicle for chlorophyll-a map in river (하천녹조지도 작성을 위한 무인항공기 활용 가능성에 관한 연구)

  • Kim, Eunju;Nam, Sookhyun;Koo, Jae-Wuk;Lee, Saromi;Ahn, Changhyuk;Park, Jerhoh;Park, Jungil;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.197-204
    • /
    • 2017
  • This study was carried out to apply the UAV(Unmanned Aerial Vehicle) coupled with Multispectral sensor for the algae bloom monitoring in river. The study acquired remote sensing data using UAV on the midstream area of Gum River, one of four major rivers in South Korea. Normalized difference vegetation index (NDVI) is used for monitoring algae change. This study conducted water sampling and analysis in the field for correlating with NDVI values. Among the samples analyzed, the chlorophyll concentration exhibited strong and significant linear relationships with NDVI, and thus NDVI was chosen for algae bloom index to identify emergence aspect of phytoplankton in river. Aerial remote sensing technology can provide more accurate, flexible, cheaper, and faster monitoring methods of detecting and predicting eutrophication and therefore cyanobacteria bloom in water reservoirs compared to currently used technology. As a result, there was high level of correlation in chlorophyll-a and NDVI. It is expected that when this remote water quality and pollution monitoring technology is applied in the field, it would be able to improve capabilities to deal with the river water quality and pollution at the early stage.

Simulation of Nitrogen Movement in the Rainfall Event at an Upland Agricultural Watershed (임야지에서 강우사상시 질소거동 모의에 관한 연구)

  • Kim, Sang-Hyeon;Kim, Geon-Mok
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.521-532
    • /
    • 2001
  • The propagation patterns of nitrogen during rainfall events are unsteady and heterogeneous due to the characteristics of generation and transport mechanisms. A simulation of non point source pollution was performed using GRASS-AGNPS to examine efficient management methods for diffusive pollution. Digital Elevation Model(DEM) was prepared to estimate the impact of topography on the transport pattern of diffusive pollutant Hanjaechon watershed on the Kyungbook province was selected as a study ares. Water quality samples were collected and analyzed for the calibration of the model. A heuristic approach was employed to improve the model performance. The model could successfully produce spatial distributions of nitrogen. The constructed map-layers may help to decision makers to determine the best management practices.

  • PDF