• Title/Summary/Keyword: polishing method

Search Result 429, Processing Time 0.025 seconds

Properties of Ti:$LiNbO_3$ Optical Waveguide by Diffusion in Air Atmosphere and Proposal of a Polishing Method (Air 분위기로 제작한 Ti:$LiNbO_3$ 도파로 특성 및 폴리싱 방법제안)

  • 김성구;윤형도;윤대원;한상필;박계춘;유용택
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.682-691
    • /
    • 1997
  • We have investigated the guided optical properties of a Ti:LiNbO$_3$optical waveguide which was fabricated by Ti-diffusion in an air atmosphere and proposed an effective polishing method of waveguide endfaces. And the results of guided optical mode and fabrication condition were obtained as follows; \circled1 propagation loss : 0.53 dB/cm \circled2 mode size : horizontal/vertical=12.5${\mu}{\textrm}{m}$ \circled3 mode mismatch : 1.7 dB \circled4 diffusion temperature : 105$0^{\circ}C$, time : 8 hours \circled5 atmosphere : air

  • PDF

Surface Condition Monitoring in Magnetic Abrasive Polishing of NAK80 Using AE Sensor and Neural Network (AE 센서와 신경회로망을 이용한 NAK80 금형강의 자기연마 가공특성 모니터링)

  • Kim, Kwang-Heui;Shin, Chang-Min;Kim, Tae-Wan;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • The magnetic abrasive polishing (MAP), for online monitoring with AE sensor attachment, was performed in this study. To predict the surface roughness after the magnetic abrasive polishing of NAK80, the signal data acquired from the AE sensor were analyzed. A dimensionless coefficient, which consisted of average of AErms and standard deviation of AE signal, was defined as a characteristic of the MAP and a prediction model was obtained using least square method. A neural network, which had multiple input parameters from AE signals and polishing conditions, was applied for predicting the surface roughness. As a result of this study, it was seen that there was very close correlation between the AE signal and the surface roughness in the MAP. And then on-line prediction of the surface roughness after the MAP of the NAK80 was possible by the developed prediction model.

Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing (Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작)

  • Lee, J.W.;Ha, S.J.;Hong, K.P.;Cho, M.W.;Kim, G.H.;Yoon, G.S.;Je, T.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.

The Effect of Pad Groove Density on CMP Characteristics (패드 그루브의 밀도변화가 연마특성에 미치는 영향)

  • Park Kihyun;Jung Jaewoo;Lee Hyunseop;Seo Heondeok;Jeong Seokhun;Lee Sangjik;Jeong Haedo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.27-33
    • /
    • 2005
  • Polishing pads play an important role in chemical mechanical polishing(CMP) which has recently been recognized at the most effective method to achieve global planarization. In this paper, we have investigated CMP characteristics as a change of groove density of polishing pads. The parameter $(K_n)$ is proposed to estimate groove density of pad. The $K_n$ is defined as groove area divided by pitch area. As the groove density value increased, removal rate increased to some point and then gradually saturated in case of increasing the groove density excessively. In addition Within wafer non-uniformity(WIWNU) worse as groove density increased excessively, although WIWNU improved as groove density increased. Also the uniformity of temperature of pad surface decreased as the groove density increased. It was because that the cooling effect increased as groove density increased. In other words, increasing the groove density which means the apparent contact area of pad has influence on amount of discharge of slurry during polishing process.

Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics (기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가)

  • Park Sung-Jun;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

Characteristics of Fe-WC composite powders for Magnetic Abrasive (자성연마용 Fe-WC복합지립의 조직특성)

  • Lee, Yeong-Ran;Bae, Seung-Yeol;Gwon, Dae-Hwan;An, In-Seop;Kim, Yu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.907-911
    • /
    • 2001
  • In order to improve the grindability of magnetic abrasive, Fe-WC magnetic abrasives were made by a plasma melting method after ball milling at various times. This study aims to investigate homogeneously distributed hard phases in Fe matrix and strong bonding between the Fe-matrix and the hard phase. According to XRD, SEM and OM observation, Fe-WC magnetic abrasive powders exhibit the best grindability by plasma melting for 30h ball milling. As a result of magnetic abrasive polishing, the surface roughness, R_{max}$ 5.0$\mu\textrm{m}$, before magnetic abrasive polishing, was reduced to R_{max}$ 2.4$\mu\textrm{m}$. The new magnetic abrasive polishing process is thought to be the useful methods for the automation of three dimensional surface polishing.

  • PDF

Properties of Microemulsion Containing Quaternary Ammonium Salt as Polishing Wax (광택용 왁스로서 4차 암모늄염을 함유한 마이크로에멀젼의 특성)

  • Lee, Jang-Weon;Kim, Myung-Soo;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • In this work, the properties as polishing wax for automobile of O/W type microemulsion containing wax, liquid paraffine and quaternaryammonium salt was investigated. The microemulsions were prepared at $96{\sim}97^{\circ}C$ by the phase inversion method, and polyoxyethylene(20) sorbitan monooleate (POE(20)SMO) and distearyl dimethyl ammonium chloride(D.D.A.C) as the emulsifiers were used. The mean particle size of the rnicroemulsions was about 7${\pm}$0.5nm and as the properties of polishing wax, gloss increased degree, water resistant gloss degree, initial and final contact angle after water resistance were tested. The result was that the value of water resistantance and contact angle were decreased with increasing amount of POE(20)SMO and D.D.A.C., while the gloss degree values did not affected. And the rnicroemulsion blended with mono ethylene glycol(MEG) of 5${\sim}$15wt% showed smaller particle size and more stable particle size distribution than without MEG. Finally, this microemulsion showed more excellent values of gloss degree, the water resistant gloss degree and contact angle, than two kinds of commercial polishing wax for automobile.

Study for Improvement of Laser Induced Damage of 1064 nm AR Coatings in Nanosecond Pulse

  • Jiao, Hongfei;Cheng, Xinbing;Lu, Jiangtao;Bao, Ganghua;Zhang, Jinlong;Ma, Bin;Liu, Huasong;Wang, Zhanshan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • For the conventionally polished fused silica substrate, an around 100 nm depth redeposition polishing layer was formed on the top of surface. Polishing compounds, densely embedded in the redeposition polishing layer were the dominant factor that limited the laser induced damage threshold (LIDT) of transmission elements in nanosecond laser systems. Chemical etching, super-precise polishing and ion beam etching were employed in different ways to eliminate these absorbers from the substrate. After that, Antireflection (AR) coatings were deposited on these substrates in the same batch and then tested by 1064 nm nano-pulse laser. It was found that among these techniques only the ion beam etching method, which can effectively remove the polishing compound and did not induce extra absorbers during the disposal process, can successfully improve the LIDT of AR coatings.

Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light (자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향)

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

A Study on Pressure Distribution for Uniform Polishing of Sapphire Substrate

  • Park, Chul jin;Jeong, Haedo;Lee, Sangjik;Kim, Doyeon;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • Total thickness variation (TTV), BOW, and surface roughness are essential characteristics for high quality sapphire substrates. Many researchers have attempted to increase removal rate by controlling the key process parameters like pressure and velocity owing to the high cost of consumables in sapphire chemical mechanical polishing (CMP). In case of the pressure approach, increased pressure owing to higher deviation of pressure over the wafer leads to significant degradation of the TTV. In this study, the authors focused on reducing TTV under the high-pressure conditions. When the production equipment polishes multiple wafers attached on a carrier, higher loads seem to be concentrated around the leading edge of the head; this occurs because of frictional force generated by the combination of table rotation and the height of the gimbal of the polishing head. We believe the skewed pressure distribution during polishing to be the main reason of within-wafer non-uniformity (WIWNU). The insertion of a hub ring between the polishing head and substrate carrier helped reduce the pressure deviation. Adjusting the location of the hub ring enables tuning of the pressure distribution. The results indicated that the position of the hub ring strongly affected the removal profile, which confirmed that the position of the hub ring changes the pressure distribution. Furthermore, we analyzed the deformation of the head via finite element method (FEM) to verify the pressure non-uniformity over the contact area Based on experiment and FEM results, we determined the optimal position of hub ring for achieving uniform polishing of the substrate.