• Title/Summary/Keyword: polished surfaces

Search Result 140, Processing Time 0.028 seconds

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

EFFECTS OF VARIOUS ETCHING TIMES ON DEPTH OF ETCH AND SHEAR BOND STRENGTH OF AN ORTHODONTIC RESIN TO BOVINE ENAMEL (부식시간이 소의 법랑질 부식깊이와 교정용 레진의 전단결합강도에 미치는 영향)

  • Kim, Jeong-Hoon;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.23 no.1 s.40
    • /
    • pp.75-88
    • /
    • 1993
  • Recent reports indicate that shorter etching times than 60 seconds can be adopted without affecting the bond strength and clinical disadvantages. The purpose of this in vitro study was to compare the shear bone strength and to measure depth of etch at different etching time length. One hundred and eight extracted bovine lower central incisors were embedded each in a tooth cup with cold-cure acrylic resin. The facial surfaces of the teeth were ground wet with 600-, 800-, 1000-, and 1200-grit Sic papers, and finally polished with a water slurry of extrafine silicon carbide powder, washed with tap water, and dried with hot air. Nine groups of nine prepared teeth were etched with a commercial($38\%$ phosphoric acid solution) for 0, 5, 10, 15, 20, 30, 60, 90, and 120 seconds, respectively, rinsed with tap water, and dried with hot air. One conditioned teeth from every group was selected randomly for the scanning electron microscopic examination, and the remaining eight teeth of the groups were used for measuring the push shear bond strength after bonding brackets and immensing them in the $36.5^{\circ}C$ water for 24 hours. Another nine groups of three teeth were used for measuring the depth of etch and surface roughness with a surface profilometer. after pieces of adhesive tape of 3mm inner diameter positioned on the ground enamel surfaces, and etched with the above mentioned. The data obtained form the above expeiments were analysed statistically with one way ANOVA and Dunkan's multiple range test with the $95\%$ confidence level. The results and conclusion of the study were as follows; 1. The results of shear bond strength for the given experimental etching times were not statistically different, but showed the tendency of decreasing shear bone strength after over 60 seconds etching times. 2. On the scanning election microscopic examination, it was observed that the morphological patterns of etched enamel surface for 5 to 20 seconds were similar and consitent, and those for 30 to 120 seconds showed increasing over-etched patterns depending on the length of etching times. 3. The depth of etch was increased almost proportionally by the length of etching times, but it was not associated with the shear bond strength. 4. The surface roughness increased depending on the length of etching times, but it was not associated with the shear bond strength. 5. This experiment indicated that proper etching time with $38\%$ phosphoric acid solution is in the range of 5 to 30 seconds.

  • PDF

THE STUDY OF CHANGE IN SURFACE HARDNESS AND TEXTURES OF COMPOSITE RESIN DUE TO ENZYMATIC ACTION (수종 복합레진에 있어서 효소 역할에 의한 표면 경도와 조도 변화에 관한 연구)

  • Kim, Mi-Ri;Lee, yung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.193-213
    • /
    • 1995
  • The purpose of this study is to investigate a possible contribution of nonspecific esterases, which occur in the oral cavity, to the degradation of ester bonds in polymethacrylates. One of the problems connected with the use of composite resins for restorations is their inadequate resistance to wear. It has been shown that methacrylate hydrolysis can be catalyzed by enzymes and that a carboxylic hydrolase (porcine liver esterase) catalyzed the hydrolysis of several mono - and dimethacrylates. The softening effect on a BISGMA/TEGDMA polymer induced by hydrolase will accelerate the in vivo wear of the polymer. Porcine liver esterase (EC 3.1.1.1) 3.2 mol/L $(NH_4)_2$ $SO_4$ was obtained from Sigma Chemical Company. The esterase activity of one unit is defined as the amount of enzyme capable of hydrolyzing $l{\mu}mol$ ethyl butyrate per min at pH 8.0 AT $25^{\circ}C$. Phosphate buffer, 10mmol/L, pH 7.0, was made by adjustment of a solution of $Na_2HPO_4$ with $H_3PO_4$. Composite resins used in this study are Silux Plus, Z-100, Durafil VS, and Prisma APH. Cylindrical specimens, 14mm in diameter and 3mm thick, of Silux Plus, Z-100, Durafil VS, Prisma APH were polymerized under the celluloid strip. 60 specimens were divided into 2 groups. One group was emersed only in buffer solution, the other group was emersed in buffer and enzyme solution. Silux Plus and Z-100 were divided into 2 subgroups, one subgroup was cured only Visilux 2. And the other subgroup was cured Visilux 2 and Triaid II. Thereafter, specimens were polished to its best achievable surface according to manufacture's directions. The Vickers hardness of the specimens was measured after 1, 2, 4, 7, 9, 15, 50 days. The solutions were changed after each measurement. Composite resin surfaces were evaluated for the surface roughness with profilometer (${\alpha}$-step 200, Tencor instruments, USA) after 1 and 50 days. And then surfaces of specimens were pictured with stereosopy after 1 and 50 days. The results were as follows. 1. The surface hardness of Silux plus, durafil VS, and Prisma APH were decreased with time. But, the surface hardness of Z-100 was not decreased. 2. The surface hardness of all composite resins was decreased by esterase. 3. Composite resins, which were light-cured by Visilux 2 and concomitantly baked by oven, showed more hardened surface than light-cured by Visilux 2 only. 4. Significant surface changes were occured in Silux plus after esterase treatment.

  • PDF

AN EVALUATION OF WEAR CHARACTERISTICS OF LIGHT-CURED RESTORATIVE COMPOSITES ON ENAMEL SURFACE (광중합형 복합레진과 법랑질간의 마모특성 평가)

  • Baik, Byeong-Ju;Lee, Seung-Young;Lee, Doo-Cheol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.261-270
    • /
    • 2001
  • This study was performed to evaluate wear characteristics of light-cured composites when opposed by human enamel. Seven light-cured restorative composites were selected and enamel cusps sectioned from premolars. All samples were stored in distilled water at $37^{\circ}C$ for 10 days. 68.6 N of weight was loaded during the test. The measurements of vertical loss of enamel cusps, weight loss and volume loss of composites, and SEM observations of the polished and abraded surfaces were made after 30,000 cycles. The results obtained were summarized as follows; 1. The highest hardness value of 70.4 was observed in the Spectrum group and the lowest value of 19.8 was observed in the Heliomolar group. Results of Tukey test showed that an overall significant difference was indicated except the Spectrum, Z100 and Clearfil AP-X groups(p<0.05). 2. Enamel showed the good abrasion resistance against the Heliomolar group of microfilled composite and the Palpique Toughwell group containing the submicron hybrid type spherical fillers. 3. The abrasive wear resistance of hybrid composites was improved with the decrease of mean particle size and hybrid of submicron particle fillers. 4. SEM observation of worn surfaces revealed the protrusion, attrition and missing of fillers, cracks developing and delamination in the matrix.

  • PDF

PLAQUE ADHESION ON THE SURFACES OF VARIOUS COMPOSITE RESIN (수종 복합레진에 대한 치태 부착도 비교)

  • Kim, Young-Jong;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.547-554
    • /
    • 2004
  • The surface characteristics of restoration such as surface roughness and droplet contact angle are important part for the process of bacterial adhesion. The purpose of this study is to compare plaque adhesion by measuring roughness, droplet contact angle, and amount of accumulated plaque on the surfaces of composite resins. Four kinds of composite resins, Z-100(Z1), Durafil(DF), Filtek supreme(FS), Clearfil AP X(CA) were used. Ten samples were divided into unpolished and polished group. Surface roughnesses and droplet contact angles were measured by profilometer and goniometer. Plaque weight gains are measured. The results were as follows: 1. The experimental group were rougher than the control group. Surface roughnesses were decreased in the following order; (Z1, DF, CA)>FS in the control group, and CA>Z1>(FS, DF) in the experimental group(P<0.05). 2 The control group showed larger contact angle than the experimental group. Contact angles were decreased in the following order; CA>(FS, DF, Z1) in the control group, and (CA, DF)>(FS, Z1) in the experimental group(P<0.05). 3. The experimental group showed more much plaque than the control group. The amounts of plaque accumulation in vitro were decreased in the following order; Z1>(DF, FS)>CA in the control group, and Z1>FS>(CA, DF) in the experimental group. The latter showed more much plaque than the former(P<0.05). 4. There were stronger correlation between plaque deposition and contact angle (P<0.05) than that of plaque deposition and surface roughness.

  • PDF

THE BONDING DURABILITY OF TOTAL ETCHING ADHESIVES ON DENTIN (산부식형 상아질 접착제의 접착 내구성에 관한 연구)

  • Jung, Mi-Ra;Choi, Gi-Woon;Park, Sang-Hyuk;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.365-376
    • /
    • 2007
  • The purpose of this study was to evaluate the effect of different etching times on microtensile bond strength (${\mu}TBS$) to dentin both initial and after thermocycling with 3 different types of total-etching adhesives. Fifty four teeth were divided into 18 groups by etching times (5, 15, 25 sec), adhesives types (Scotchbond Multipurpose (SM), Single Bond (SB), One-Step (OS)) and number of thermocycling (0, 2,000 cycles). Flat dentin surfaces were prepared on mid-coronal dentin of extracted third molars. After exposed fresh dentin surfaces were polished with 600-grit SiC papers, each specimen was acid-etched with 35% phosphoric acid (5, 15, 25 sec) and bonded with 3 different types of total etching adhesives respectively. Then, hybrid composite Z-250 was built up. Half of them were not thermocycled (control group) and the ethers were subjected to 2,000 thermocycle (experimental group). They were sectioned occluso-gingivally into $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams and tested with universal testing machine at a crosshead speed of 1.0 mm/min. Within limited data of this study, the results were as follows 1. There was no statistically significant difference in ${\mu}TBS$ between the thermocycled and non-thermocycled groups, except for both SM and SB etched for 25 sec. 2. In thermocycled SM and SB groups, bond strength decreased by extended etching time. In total etching systems, adhesive durability for dentin could be affected by type of solvents in adhesive and etching time. Especially, extended etching time may cause deteriorate effects on bond strength when ethanol-based adhesive was used.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

The effects of polishing technique and brushing on the surface roughness of acrylic resin (연마 방법과 칫솔질이 아크릴릭 레진의 표면 거칠기에 미치는 영향)

  • Lee, Ju-Ri;Jeong, Cheol-Ho;Choi, Jung-Han;Hwang, Jae-Woong;Lee, Dong-Hwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.287-293
    • /
    • 2010
  • Purpose: This study evaluated the effect of polishing techniques on surface roughness of polymethyl methacrylate (PMMA), as well as the influence of light-cured surface glaze and subsequent brushing on surface roughness. Materials and methods: A total of 60 PMMA specimens ($10{\times}10{\times}5\;mm$) were made and then divided into 6 groups of 10 each according to the polymerization methods (under pressure or atmosphere) and the surface polishing methods (mechanical or chemical polishing) including 2 control groups. The mechanical polishing was performed with the carbide denture bur, rubber points and then pumice and lathe wheel. The chemical polishing was performed by applying a light-cured surface glaze ($Plaquit^{(R)}$; Dreve-Dentamid GmbH). Accura $2000^{(R)}$, a non-contact, non-destructive, optical 3-dimensional surface analysis system, was used to measure the surface roughness (Ra) and 3-dimensional images were acquired. The surface roughness was again measured after ultrasonic tooth brushing in order to evaluate the influence of brushing on the surface roughness. The statistical analysis was performed with Mann-Whitney test and t-test using a 95% level of confidence. Results: The chemically polished group showed a statistically lower mean surface roughness in comparison to the mechanically polished group (P = .0045) and the specimens polymerized under the atmospheric pressure presented a more significant difference (P = .0138). After brushing, all of the groups, except the mechanically polished group, presented rougher surfaces and showed no statistically significant differences between groups. Conclusion: Although the surface roughness increased after brushing, the chemical polishing technique presented an improved surface condition in comparison to the mechanical polishing technique.

EFFECT OF LIGHT IRRADIATION MODES ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATION (광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향)

  • 박은숙;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.263-272
    • /
    • 2001
  • The aim of this study was to investigate the influence of four different light curing modes on the marginal leakage of Class V composite resin restoration. Eighty extracted human premolars were used. Wedge-shaped class Y cavities were prepared on the buccal surface of the tooth with high-speed diamond bur without bevel. The cavities were positioned half of the cavity above and half beyond the cemento-enamel junction. The depth, height, and width of the cavity were 2 mm, 3 mm and 2 mm respectively. The specimens were divided into 4 groups of 20 teeth each. All the specimen cavities were treated with Prime & Bond$^{R}$ NT dental adhesive system (Dentsply DeTrey GmbH, Germany) according to the manufacturer's instructions and cured for 10 seconds except group VI which were cured for 3 seconds. All the cavities were restored with resin composite Spectrum$^{TM}$ TPH A2 (Dentsply DeTrey GmbH, Germany) in a bulk. Resin composites were light-cured under 4 different modes. A regular intensity group (600 mW/${cm}^2$, group I) was irradiated for 30 s, a low intensity group (300 mW/${cm}^2$, group II) for 60 s and a ultra-high intensity group (1930 mW/${cm}^2$, group IV) for 3 s. A pulse-delay group (group III) was irradiated with 400 mW/${cm}^2$ for 2 s followed by 800 mW/${cm}^2$ for 10 s after 5 minutes delay. The Spectrum$^{TM}$ 800 (Dentsply DeTrey GmbH, Germany) light-curing units were used for groups I, II and III and Apollo 95E (DMD, U.S.A.) was used for group IV. The composite resin specimens were finished and polished immediately after light curing except group III which were finished and polished during delaying time. Specimens were stored in a physiologic saline solution at 37$^{\circ}C$ for 24 hours. After thermocycling (500$\times$, 5-55$^{\circ}C$), all teeth were covered with nail varnish up to 0.5 mm from the margins of the restorations, immersed in 37$^{\circ}C$, 2% methylene blue solution for 24 hours, and rinsed with tap water for 24 hours. After embedding in clear resin, the specimens were sectioned with a water-cooled diamond saw (Isomet$^{TM}$, Buehler Co., Lake Bluff, IL, U.S.A.) along the longitudinal axis of the tooth so as to pass the center of the restorations. The cut surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan) at ${\times}$25 magnification, and the images were captured with a CCD camera (GP-KR222, Panasonic, Japan) and stored in a computer with Studio Grabber program. Dye penetration depth at the restoration/dentin and the restoration/enamel interfaces was measured as a rate of the entire depth of the restoration using a software (Scion image, Scion Corp., U.S.A.) The data were analysed statistically using One-way ANOVA and Tukey's method. The results were as follows : 1. Pulse-Delay group did not show any significant difference in dye penetration rate from other groups at enamel and dentin margins (p>0.05) 2. At dentin margin, ultra-high intensity group showed significantly higher dye penetration rate than both regular intensity group and low intensity group (p<0.05). 3. At enamel margin, there were no statistically significant difference among four groups (p>0.05). 4. Dentin margin showed significantly higher dye penetration rate than enamel margin in all groups (p<0.05).

  • PDF

Elemental alteration of the surface of dental casting alloys induced by electro discharge machining (치과용 주조 합금의 방전가공에 따른 표면 성분 변화)

  • Jang, Yong-Chul;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Passive fitting of meso-structure and super-structures is a predominant requirement for the longevity and clinical success of osseointegrated dental implants. However, precision and passive fitting has been unpredictable with conventional methods of casting as well as for corrective techniques. Alternative to conventional techniques, electro discharge machining(EDM) is an advanced method introduced to dental technology to improve the passive fitting of implant prosthesis. In this technique material is removed by melting and vaporization in electric sparks. Regarding the efficacy of EDM, the application of this technique induces severe surface morphological and elemental alterations due to the high temperatures developed during machining, which vary between $10,000{\sim}20,000^{\circ}C$. The aim of this study was to investigate the morphological and elemental alterations induced by EDM process of casting dental gold alloy and non-precious alloy used for the production of implant-supported prosthesis. A conventional clinical dental casting alloys were used for experimental specimens patterns, which were divided in three groups, high fineness gold alloy(Au 75%, HG group), low fineness gold alloy(Au 55%, LG group) and nonprecious metal alloy(Ni-Cr, NP group). The UCLA type plastic abutment patterns were invested with conventional investment material and were cast in a centrifugal casting machine. Castings were sandblasted with $50{\mu}m\;Al_2O_3$. One casting specimen of each group was polished by conventional finishing(HGCON, LGCON, NPCON) and one specimen of each group was subjected to EDM in a system using Cu electrodes, kerosene as dielectric fluid in 10 min for gold alloy and 20 min for Ni-Cr alloy(HGEDM. LGEDM, NOEDM). The surface morphology of all specimens was studied under an energy dispersive X-ray spectrometer (EDS). The quantitative results from EDS analysis are presented on the HGEDM and LGEDM specimens a significant increase in C and Cu concentrations was found after EDM finishing. The different result was documented for C on the NPEDM with a significant uptake of O after EDM finishing, whereas Al, Si showed a significant decrease in their concentrations. EDS analysis showed a serious uptake of C and Cu after the EDM procedure in the alloys studied. The C uptake after the EDM process is a common finding and it is attributed to the decomposition of the dielectric fluid in the plasma column, probably due to the development of extremely high temperatures. The Cu uptake is readily explained from the decomposition of Cu electrodes, something which is also a common finding after the EDM procedure. However, all the aforementioned mechanisms require further research. The clinical implication of these findings is related with the biological and corrosion resistance of surfaces prepared by the EDM process.

  • PDF