• Title/Summary/Keyword: pole arc and pole arc ratio

Search Result 21, Processing Time 0.027 seconds

Analytical Approach and Experimental Verification for the Cogging Torque Reduction of Permanent Magnet Machines with Multi-pole Rotor (다극 회전자를 갖는 영구자석 기기의 코깅토크 저감을 위한 해석적 접근 및 실험적 검증)

  • Jang, Seok-Myeong;Choi, Jang-Young;Ko, Kyoung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1031-1032
    • /
    • 2007
  • In order to reduce the cogging torque, by predicting the variation of the cogging torque according to pole arc/pitch ratio by analytical and FE methods, pole arc/pitch ratio which makes the cogging torque minimum are determined. And then, the measurements of cogging torque for permanent magnet generators with determined pole arc/pitch ratio are presented. The reasons for the error between predicted and measured value are discussed fully in terms of the shape of permanent magnet. Finally, by confirming that predicted results for cogging torque according to pole arc/pitch ratio and skew are shown in good agreement with those obtained from measured one, the validation of analysis results is confirmed.

  • PDF

Characteristic Analysis of Disk Type Single-phase Switched Reluctance Motor with Pole Shoe in Stator (회전자에 돌출구조를 가지는 디스크형 단상 스위치드 릴럭턴스 전동기의 특성 해석)

  • Lee, Min-Myung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.612-615
    • /
    • 2002
  • The main advantages of Disk type Single-Phase Switched Reluctance Motor (DSPSRM) is the simple construction, rugged structure, low manufacturing cost and simple driving circuit. It is especially possible to make the short axial length of DSPSRM. Therefore, it is suitable to setup this motor in a narrow space. This paper presents the shape design to maximize the average torque of DSPSRM that is achieved by 3D Finite Element Method (3D FEM) considering the nonlinear of magnetic material. The characteristics of two different rotor shapes are compared. The design parameters, such as the rotor and stator pole arc, are selected to the parametric study. The effect of pole arc ratios on the torque performance is investigated. From these results, the optimal pole arc to produce the maximum torque is determined.

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor According to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • LEE Kab-Jae;Kim Ki-Chan;Lee Jong-In;Kwon Joong-Lok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

Reduction and Analysis for Cogging Torque of Permanent Magnet Synchronous Generators with Multi-Pole Rotor for Wind Power Application (풍력발전용 영구자석 다극 동기발전기의 코깅토크의 해석 및 저감)

  • Jang, Seok-Myeong;Lee, Sung-Ho;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.375-383
    • /
    • 2008
  • This paper deals with reduction and analysis of cogging torque for permanent magnet synchronous generators with multi-pole rotor for wind power applications. Open-circuit field solutions are derived using a magnetic vector potential and a two-dimensional (2-d) polar coordinate systems. On the basis of derived open-circuit field solutions and 2-d permeance functions, we also derive open-circuit field solutions considering stator slotting effects. By using open-circuit field solutions considering stator slotting effects and energy variation methods, this paper analytically predicts the cogging torque considering skew effects. All analytical results are shown in good agreement with those obtained from finite element (FE) analyses. In order to reduce the cogging torque, by predicting the variation of the cogging torque according to pole arc/pitch ratio using analytical and FE methods, pole arc/pitch ratio which makes the cogging torque minimum are determined. However, we confirm that measured value for cogging torque of the PMG with determined pole arc/pitch ratio is twice higher than predicted value. Therefore, the reason for an error between measured and predicted cogging torque is discussed in terms of a shape of PMs and is proved experimentally.

Characteristic Analysis of Single Phase SRM on Pole Ratio (극호비에 따른 단상 SRM의 토오크 특성 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Lee, Chung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.690-692
    • /
    • 2003
  • The single phase switched reluctance motor has been studied and developed actively in the various applications with several kinds and forms because of the developments of the design technique by using the computer and of the driving technique power electronic technology, which has the merits of a simple and robust structure, and first of all reducing the number of the switching devices in comparison with poly phase switched reluctance motor. And also, the studies are making progess to substitute the switched reluctance motor for single phase induction motor. In the previous studies, the single phase switched reluctance motor for the drive of blower is designed with the design theory of the conventional rotating electric machine and poly phase switched reluctance motor. In this paper, we intend to select the optimal pole arc and pole pitch ratio by the FEM analysis, because the pole arc and pole pitch are very important factor to determine the characteristics of switched reluctance motor.

  • PDF

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor according to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • Lee K. J.;Kim K. C.;Lee J. I.;Kwon J. L.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.758-760
    • /
    • 2004
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

  • PDF

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF

Optimum Design of Pole arc shape Considering Torque Ripple of SRM (SRM의 토크리플을 고려한 극호형상의 최적설계)

  • Lee, Jin-Woo;Woo, Kyung-Il;Kim, Hong-Seok;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.30-32
    • /
    • 2001
  • Switched reluctance motors have the advantage a high torque/weight ratio, as the large reluctance torque is made by salient poles of both start and rotor, and a high reliability. On the other hand, the switched reluctance motors have the disadvantage of a large ripple torque which is made by salient poles. So the application for the industrial fields have been limited to special cases. Geometric significant parameters are ${\beta}_r$ and ${\beta}_s$ respectively the rotor and stator pole arc while the significant electric parameters are the angles where the drive switches are turned on and off. It can be simulated that ${\beta}_r$ and ${\beta}_s$ must be chosen in a particular region of the plane (${\beta}_r,\;{\beta}_s$) called the feasible triangle. The aim of this paper is to simulate the minimum of the torque ripple by using finite element method and to determine the best choice of the rotor and stator pole arc.

  • PDF

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.