• Title/Summary/Keyword: polarity reversal

Search Result 27, Processing Time 0.03 seconds

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Very-Far Remote Reference Magnetotelluric Surveys across the Hemispheres

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Cull, James
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.273-278
    • /
    • 2007
  • 2-D MT surveys at the Century mine in Australia have been performed with very far remote reference in Esashi, Japan as well as Gregory Downs, which are roughly 6400 km and 80 km apart from the field site, respectively. Long period pulsations observed in this survey generally showed dominant $H_x$ polarization than $H_y$; $H_x$ component is more than 3 times stronger than $H_y$ component. Polarity reversal in magnetic field pointing east ($H_y$ component) has also been observed in long period pulsations, while $H_x$ component remain coherent between the hemispheres. Though $H_x$ component shows relatively good coherency than $H_y$ component between the hemispheres at frequencies lower than 0.01 Hz, it seems rather too far to be used as a remote reference for ordinary MT frequency band.

  • PDF

DC and Impulse Insulation Characteristics of PPLP for HTS DC Cable (고온초전도 직류 케이블용 절연재료인 PPLP의 직류 및 임펄스 절연 특성)

  • Kim, Woo-Jin;Pang, Man-Sik;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.545-549
    • /
    • 2013
  • To realize the high-Tc superconducting (HTS) DC cable system, it is important to study not only high current capacity and low loss of conductor but also optimum electrical insulation at cryogenic temperature. A model HTS DC cable system consists of a HTS conductor, semi-conductor, cooling system and insulating materials. Polypropylene laminated paper (PPLP) has been widely adopted as insulating material for HTS machines. However, the fundamental insulation characteristics of PPLP for the development of HTS DC cable have not been revealed satisfactorily until now. In this paper, we will discuss mainly on the breakdown characteristics of 3 sheets PPLP in liquid nitrogen ($LN_2$). The characteristics of the diameter, location of butt-gap, distance between butt-gap length, pressure effect, polarity effect under DC and impulse voltage were studied. Also, the DC polarity reversal breakdown voltage of mini-model cable was measured in $LN_2$ under 0.4 MPa.

Demagnetization and Iron loss Analysis of the Single-Phase Flux Reversal Machine for High Speed drives (고속 구동용 단상 자속 역전식 전동기의 감자특성 및 철손분석)

  • Kim, Yong-Su;Kwon, Sam-Young;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.100-110
    • /
    • 2006
  • This paper presents the demagnetization and iron loss analysis of the single phase Flux Reversal Machine. It has a magnetic configuration similar to the switched reluctance machine but with multipole permanent magnets of alternate polarity on each stator salient pole embraced by concentrated coils. But it can be demagnetized by sudden over current and core losses increase because switching frequency is getting faster. This paper show demagnetization of permanent magnet and iron loss characteristic, and proposed a solution.

A study on the characteristics of interlace and Mobility of Movable Ion in polyethylene Terephthalate (Polyethylene terephthalate 중의 가동이온의 계면특성과 이동도에 관한 연구)

  • Lee, Ho-Sub;Oh, Keum-Kwon;Kook, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.233-235
    • /
    • 1988
  • This study investigate that the behavior of movable ion in PET effect on the characteristics of the insulting materials. This examine that movable ion signal to. participation of $Ca^2\;Sb^3$ resulting catalyst refuse and characteristics of activation energy that is need to reionization of movable ion type and neutralized case as measuring characteristics of polarity reversal current or thermally stimulated current.

  • PDF

Consolidation of marine clay using electrical vertical drains

  • Shang, J.Q.;Tang, Q.H.;Xu, Y.Q.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.275-289
    • /
    • 2009
  • Electroosmosis (EO) is the movement of water in a porous medium under the influence of a direct current (dc). In past decades, electro-osmosis has been successfully employed in many soil improvement and other geotechnical engineering projects. Metal electrodes, such as steel, copper and aluminum have been used traditionally to conduct current. The shortcoming of these electrodes is that they corrode easily during an EO treatment, which results in reduced effectiveness and environmental concerns. More recently, conductive polymers are developed to replace metal electrodes in EO treatment. Electrical vertical drainages (EVDs) are one of these products under trial. The goal of this study is to assess the performance of EVDs for soil improvement and to further understand the scientific principle of the EO process, including the voltage drop at the soil-EVD interface, electrical current density, polarity reversal, and changes in soil physico-chemical properties generated by electroosmosis. It is found from the study that after 19 days of EO treatment with a constant applied dc electric field intensity of 133 V/m, the soil's moisture content decreased by 28%, the shear strength and pre-consolidation pressure increased more than 400%. It is also found that the current density required triggering the water flow in the soil tested, the Korean Yulchon marine clay, is 0.7 $A/m^2$. The project demonstrates that EVDs can serve as both electrodes and drains for soil improvement in short term. However, the EVDs, as tested, are not suitable for polarity reversal in EO treatment and their service life is limited to only 15 days.

The effect of negated emotional words on polarity reversal and weakening value in valence (정서 단어 부정어가 정서가의 극성 전환 및 약화에 미치는 영향)

  • Rhee, Shin-Young;Ham, Jun-Seok;Kim, Mi-Sun;Bang, Green;Ko, Il-Ju
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.1
    • /
    • pp.97-107
    • /
    • 2012
  • Previous studies on opinion mining and sentiment analysis have supposed that the polarity and value of an emotional word is reversed when a negation word is attached. However, there are no quantitative studies on how much the polarity is changed when a negation word is following. Therefore, we measured the valence and arousal dimensions for Korean emotional words and their negations. Consequently, the polarity of valence and arousal was reversed on their intermediate level. Also, the value was reduced by about 30% to 50%. We propose this result as a guideline for processing negation words for studies on opinion mining and sentiment analysis.

  • PDF

Geomagnetism of Daedong Super Group in the Mungyong Area (I) (문경(聞慶) 지역(地域)에 분포(分布)하는 대동누층군(大同累層群)에 대(對)한 고지자기연구(古地磁氣硏究)(I))

  • Min, Kyung-Duck;Lee, Youn-Soo;Kim, Won-Kyun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.81-86
    • /
    • 1990
  • Palemagnetic study on the Deadong Super Group in the Mungyong area has been carried out to obtain the direction of NRM and virtual geomagnetic pole(VGP), and to investigate geomagnetic stratigraphy and geotectonic evolution. Twenty eight core specimens from five sites in Dangog and Bongmyongsan Formations yield magnetically stable results by thermal demagnetization test. Mean declination and inclination of Dangog and Bongmyongsan formations are $52.4^{\circ}E$ and $-57.3^{\circ}$, respectively, which indicate reversal polarity. VGP is located at $1.2^{\circ}N$ in latitude and $269.4^{\circ}E$ in longitude, which is quite different from those of other contemporary formations in China. This suggests that the study area has suffered from differnt tectonic movement caused by Daebo Orogeny occurred in the Korean Peninsula during post-Daedong and pre-Kyongsang Systems. As compared VGP of Daedong Super Group in the Mungyong area with wordwide Mesozoic paleomagnetic polarity stratigraphy, it is correlated with the reverse Epoch in the Graham normal interval. This suggests that the time of formations of Dangog and Bongmyongsan is in the age of 190-195 my.

  • PDF

Posterior Tibial Nerve Somatosensory Evoked Potentials Recorded on Subdural Electrodes around Paracentral Lobule (부중심소엽 주변 경막하 전극들에서 기록된 후경골신경 체성감각유발전위)

  • Seo, Dae Won
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.112-117
    • /
    • 1999
  • Background : Posterior tibial nerve somatosensory evoked potentials (PTSEP) have cortical potentials on primary sensory area of foot around 40 msec. The direct cortical recordings of the cortical potentials shows high voltage positive wave on medial hemisphere, especially on paracentral lobule (PCL). However, it is so difficult to record the potential directly on PCL that the cortical potential of PTSEP is not well understood. We investigated the cortical potential of PTSEP on subdural electrodes. Methods : We recorded cortical potentials to posterior tibial nerve stimulation on subdural electrodes which were on medial hemisphere near PCL in 15 intractable neocortical epilepsy patients. The numbers of subdural electrodes were 8 in 10 subjects ($1{\times}8array$) and 16 in 5 subjects ($2{\times}8arrays$). Seven subjects had three-dimensional imaging fusion (3D-fusion) of MRI and the electrodes using Analyze program. We investigated the amplitude, latency, polarity, and phase of the waves regarding location. Results : The waves had maximal amplitude on PCL in 4 subjects, precuneus in 1, cingulate gyrus nearest to PCL in 2 among 7 subjects with 3D-fusion. Also the electrodes were located on posterior area of PCL (2 out of 2 subjects with more than two electrodes put on PCL in 3D-fusion) and superior area of it (5 out of 5 subjects with $2{\times}8arrays $). All the high (more than 20 uV) amplitude around 40msec had positive polarity in 7 subjects. The phase reversals were detected between the electrodes with the highest amplitude and the just posterior (2 subjects) or anterior (6 subjects) located electrodes. The just posterior located electrodes had sharper phase reversal than the anterior one. Conclusion : PTSEP might have maximal amplitude of cortical potentials on the more superior and posterior area of PCL. The highest amplitude potential has positivity. The wave with maximal amplitude could have phase reversal of cortical potentials with surrounding electrodes, especially shaper with posterior part than with anterior one.

  • PDF