Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.7.545

DC and Impulse Insulation Characteristics of PPLP for HTS DC Cable  

Kim, Woo-Jin (Department of Electrical Engineering, Gyeongsang National University and ERI)
Pang, Man-Sik (Department of Electrical Engineering, Gyeongsang National University and ERI)
Kim, Hae-Jong (Korea Electrotechnology Research Institute, Superconductivity Center)
Cho, Jeon-Wook (Korea Electrotechnology Research Institute, Superconductivity Center)
Kim, Sang-Hyun (Department of Electrical Engineering, Gyeongsang National University and ERI)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.7, 2013 , pp. 545-549 More about this Journal
Abstract
To realize the high-Tc superconducting (HTS) DC cable system, it is important to study not only high current capacity and low loss of conductor but also optimum electrical insulation at cryogenic temperature. A model HTS DC cable system consists of a HTS conductor, semi-conductor, cooling system and insulating materials. Polypropylene laminated paper (PPLP) has been widely adopted as insulating material for HTS machines. However, the fundamental insulation characteristics of PPLP for the development of HTS DC cable have not been revealed satisfactorily until now. In this paper, we will discuss mainly on the breakdown characteristics of 3 sheets PPLP in liquid nitrogen ($LN_2$). The characteristics of the diameter, location of butt-gap, distance between butt-gap length, pressure effect, polarity effect under DC and impulse voltage were studied. Also, the DC polarity reversal breakdown voltage of mini-model cable was measured in $LN_2$ under 0.4 MPa.
Keywords
HTS DC cable; Breakdown characteristics; PPLP; DC polarity reversal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Badel, P. Tixador, and P. Dedie, IEEE Trans. Appl. Supercon., 21, 1375 (2011).   DOI   ScienceOn
2 J. Kozak, M. Majka, S. Kozak, and T. Janowski, IEEE Trans. Appl. Supercon., 22, 5601804 (2012).   DOI   ScienceOn
3 A. Lapthorn, P. S. Bodger, and W. Enright, IEEE Trans. Power Del., 28, 253 (2013).   DOI   ScienceOn
4 S. Mukoyama, M. Yagi, T. Yonemura, T. Nomura, N. Fujiwara, Y. Ichikawa, Y. Aoki, T. Saitoh, N. Amemiya, A. Ishiyama, and N. Hayakawa, IEEE Trans. Appl. Supercon., 21, 976 (2011).   DOI   ScienceOn
5 J. F. Maguire, J. Yuan, W. Romanosky, F. Schmidt, R. Soika, S. Bratt, F. Durand, C. King, J. McNamara, and T. E. Welsh, IEEE Trans. Appl. Supercon., 21, 961 (2011).   DOI   ScienceOn
6 M. Nagao, M. Kurimoto, R. Takahashi, T. Kawashima., Y. Murakami, T. Nishimura, Y. Ashibe, and T. Masuda, IEEE Conference on Electrical Insulation and Dielectric Phenomena Annual Report (IEEE, Cancun, Mexico, 2011) p. 419.
7 M. Hazeyama, T. Kobayashi, N. Hayakawa, S. Honjo, T. Masuda, and H. Okubo, IEEE Trans. Dielectr. Electr. Insul., 9, 6 939 (2002).
8 K. Tsuyuki, S. Washida, O. Tanda, T. Masuda, K. Kato, T. Nakajima, and S. Mukoyama, Cryogenic Engineering of Japan, 35, 350 (2000).   DOI
9 W. J. Kim, H. J. Kim, J. W. Cho, S. Hwangbo, and S. H. Kim, Superconductivity and Cryogenics, 14, 32 (2012).