• Title/Summary/Keyword: poisson regression analysis

검색결과 149건 처리시간 0.024초

NHPP모형에 기초한 고장 수 자료의 분석 (Analysis of Failutr Count Data Based on NHPP Models)

  • 김성희;정향숙;김영순;박중양
    • 한국정보처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.395-400
    • /
    • 1997
  • 소프트웨어 신뢰도는 소프트웨어의 중요한 품질 특성 중의 하나이며, 소프트웨어 신뢰도 성장 모형은 테스트 단계동안 신뢰도를 평가하고 신뢰도가 성장하는 양상을 파악 할 수 있는 도구이다. 그러므로 테스트 단계동안 수집된 고장 자료는 적절한 소프트웨어 신뢰도 모형에 의거해 계속적으로 분석된다. 비등질 포아송 과정 모형이 적절한 소프트웨어 신뢰도 성장 모형인 경우 고장 수 자료를 분석하기 위해서 포아송 희귀 모형을 세우고 모수들은 가장 최소 자승법으로 추정하는 것이 가능하며, 이렇게 구한 가장 최소 자승 추정량은 최우 추정량과 동일한 성질을 가짐을 보일 수 있다. 이 분석 방법을 대형 시스템으로부터 수집된 실제 자료를 분석하는데 적용한다.

  • PDF

영과잉포아송회귀분석을 활용한 안정병동에 입원한 정신질환자의 공격행동 예측요인 (Predictors for Aggressive Behavior of Patients with Mental Illness in a Closed Psychiatric Ward using Zero-Inflated Poisson Regression: A Retrospective Study)

  • 김정호;신성희
    • 동서간호학연구지
    • /
    • 제28권2호
    • /
    • pp.160-169
    • /
    • 2022
  • Purpose: This study was conducted to identify predictors related to aggressive behavior of patients with mental illness admitted to a closed psychiatric ward. Methods: This study adopted a retrospective design which analyzed the hospital medical records of 363 patients with mental illness admitted to the psychiatric closed ward of a university hospital in Seoul, Korea. The collected data were analyzed using SPSS IBM 20.0 and STATA 12.0 SE. ZIP (Zero-Inflated Poisson) and count data analysis were used for the factor influencing the occurrence and frequency of aggressive behavior. Results: The results of ZIP model showed that the factors influencing non-probability of aggressive behavior were anxiety, non-adherence, and frustration. In addition, the factors influencing frequency of aggressive behavior were bipolar disorder and personality disorder trait. Conclusion: We found that bipolar disorder, frustration, and non-adherence are more likely to increase the likelihood of aggressive behavior in patients with mental illness. In particular, patients diagnosed with bipolar disorder were 1.95 times more likely to engage in repetitive aggressive behavior compared to those without a diagnose. However, since the results were different form previous studies, further studies on the traits of anxiety and personality disorders are needed.

사고유형에 따른 원형교차로 사고모형 (Accident Models of Circular Intersections by Type in Korea)

  • 한수산;김경환;박병호
    • 한국도로학회논문집
    • /
    • 제13권3호
    • /
    • pp.103-110
    • /
    • 2011
  • 이 논문은 사고유형에 따른 교통사고를 다루고 있다. 연구의 목적은 두 가지 사고유형의 특성을 분석하고, 유형별 모형을 개발하는데 있다. 이를 위해 이 연구는 두 집단 사이의 차이점을 분석하고, 국내 원형교차로 자료를 사용하여 포아송 및 음이항 회귀모형을 개발하는데 그 목적이 있다. 주요 결과는 다음과 같다. 첫째, 차대차 사고가 73.41%로 가장 많은 비중을 차지하는 것으로 분석되었다. 둘째, 차대사람과 차대차 사고건수 및 EPDO를 종속변수로 통계적으로 의미 있는 2개의 포아송 모형과 2개의 음이항 모형이 개발되었다. 셋째, 사고유형별 심각도모형의 공통변수는 교통량, 그리고 특정변수로는 우회전 별도차로 수, 과속방지턱, 진출입구 수 및 횡단보도 수가 채택되었다.

가산자료모형을 이용한 송정 해수욕장의 경제적 가치추정: - 비수기 해수욕장의 가치추정 - (Estimating the Economic Value of the Songieong Beach Using A Count Data Model: - Off-season Estimating Value of the Beach -)

  • 허윤정;이승래
    • 수산경영론집
    • /
    • 제38권2호
    • /
    • pp.79-101
    • /
    • 2007
  • The purpose of this study is to estimate the economic value of the Songieong Beach in Off-season, using a Individual Travel Cost Model(ITCM). Songieong Beach is located in Busan but far away from city. These days, however, the increased rate of traffic inflow to the Songieong beach and the five-day working week are reflected in the trend analysis. Moreover, people have changed psychological value. For that reason, visitors are on the increase on the beach in off-season. The ITCM is applied to estimate non-market value or environmental Good like a Contingent Valuation Method and Hedonic Price Model etc. The ITCM was derived from the Count Data Model(i.e. Poisson and Negative Binomial model). So this paper compares Poisson and negative binomial count data models to measure the tourism demands. The data for the study were collected from the Songjeong Beach on visitors over the a week from November 1 through November 23, 2006. Interviewers were instructed to interview only individuals. So the sample was taken in 113. A dependent variable that is defined on the non-negative integers and subject to sampling truncation is the result of a truncated count data process. This paper analyzes the effects of determinants on visitors' demand for exhibition using a class of maximum-likelihood regression estimators for count data from truncated samples, The count data and truncated models are used primarily to explain non-negative integer and truncation properties of tourist trips as suggested by the economic valuation literature. The results suggest that the truncated negative binomial model is improved overdispersion problem and more preferred than the other models in the study. This paper is not the same as the others. One thing is that Estimating Value of the Beach in off-season. The other thing is this study emphasizes in particular 'travel cost' that is not only monetary cost but also including opportunity cost of 'travel time'. According to the truncated negative binomial model, estimates the Consumer Surplus(CS) values per trip of about 199,754 Korean won and the total economic value was estimated to be 1,288,680 Korean won.

  • PDF

경험적 베이즈 방법을 이용한 무인신호위반단속장비의 사고감소 효과 (Effects on the Accident Reduction of Red Light Camera Using Empirical Bayes Method)

  • 김태영;박병호
    • 한국ITS학회 논문지
    • /
    • 제8권6호
    • /
    • pp.46-54
    • /
    • 2009
  • 본 연구는 무인신호위반단속장비의 사고감소 효과를 다루고 있다. 연구의 목적은 EB (Empirical Bayes)방법을 이용하여 사고감소 효과를 분석하는데 있다. 이를 위해 무인신호위반단속장비가 설치된 28개 교차점 728건의 사고자료를 이용한다. 연구의 주요결과는 다음과 같다. 첫째, 단순사고건수 방법의 사고감소 효과는 20.74%로 분석되었다. 둘째, 포아송과 음 이항 회귀모형을 이용하여 SPF모형이 개발되었으며, 과분산계수가 0에 가까워 포아송 회귀모형이 음이항 회귀모형보다 더 적합한 것으로 평가되었다. 아울러 포아송 모형의 ${\rho}^2$값이 0.409로 나타나 통계적으로 유의한 모형으로 분석되었다. 마지막으로, EB방법을 이용한 분석 결과, 사고가 3.89%에서 29.23% 감소된 것으로 나타났다.

  • PDF

공간 상호작용 모델에 대한 공간단위 수정가능성 문제(MAUP)의 영향 (Effects of the Modifiable Areal Unit Problem (MAUP) on a Spatial Interaction Model)

  • 김감영
    • 대한지리학회지
    • /
    • 제46권2호
    • /
    • pp.197-211
    • /
    • 2011
  • 공간 상호작용의 복잡성, 공간적 재현과 모델링의 필요성에 의해서 공간 상호작용 데이터의 합역이 불가피하다. 이러한 상황에서 본 연구의 목적은 공간 상호작용 데이터를 스케일을 달리하여 합역하거나 혹은 동일 스케일에서 합역 방식을 달리하여 합역하였을 때, 공간 상호작용 모델의 결과가 어떻게 달라지는지 평가하는 것이다. 공간 상호작용 데이터의 합역은 공간단위 수정가능성의 문제(Modifiable Areal Unit Problem: MAUP)를 야기한다. 공간 상호작용 데이터의 합역을 위하여 무작위로 구역 시드를 선정한 후 인접한 공간단위를 할당하는 방법, 구역 시드와 공간단위 사이의 연구 가중 거리를 최소화하는 방법, 구역 내 상호작용 비율을 최대화하는 방법, 구역 내 상호작용 비율을 최소화하는 방법을 사용하였다. MAUP의 영향을 평가하기 위한 공간 상호작용 모텔로 기원지-목적지 제약 포아송 회귀 모델을 이용하였다. 분석 결과는 모델 잔차의 공간적 특성뿐만 아니라 파라미터 추정값, 적합도 등이 MAUP의 영향을 받는다는 것을 보여주었다. 모델은 합역 방식 보다는 합역 수준에 더 민감하게 반응하였고, 모델에 대한 스케일 효과는 구획 방식에 따라 상이하게 나타났다.

Korean Regional Mortality Differences According to Geographic Location

  • Lee, Sang-Gyu
    • 보건교육건강증진학회지
    • /
    • 제20권4호
    • /
    • pp.51-65
    • /
    • 2003
  • Objectives: To examine the regional mortality differences in The Republic of Korea according to geographic location. Methods: All 232 administrative districts of the Republic of Korea in 1998 were studied according to their geographic locations by dividing each district into three categories; "metropolis," "urban," and "rural". Crude mortality rates for doth sexes from total deaths as well as the three major causes of death in Korea (cardiovascular disease, cancer, and external causes) were calculated with raw data from the "1998 report on the causes of death statistics" and resident registration data. Standardized mortality ratios (SMR) were calculated using the indirect standardization method. Poisson regression analyses were performed to examine the effects of geographic locations on the risk of death. To correct for the socioeconomic differences of each region, the percentage of old ($\geq$ 65 years old) population, the number of privately owned cars per 100 population, and per capita manufacturing production industries were included in the model. Results: Most SMRs were the lowest in the metropolis and the highest in the rural areas. These differences were more prominent in men and in deaths from external causes. In deaths from cancer in women, the rural region showed the lowest SMR. In Poisson regression analysis after correcting for regional socioeconomic differences, the risk of death from all causes significantly increased in both urban (OR=1.111) and rural (OR=1.100) regions, except for rural women, compared to the metropolis region. In men, the rural region showed higher risk (OR=1.180) than the urban region (OR=1.l51). For cardiovascular disease and cancer, significant differences were not found between geographic locations, except in urban women for cardiovascular disease (OR=1.151) and in rural women for cancer (OR=0.887), compared to metropolis women. In deaths from external causes, the risk ratios significantly increased in both urban and rural regions and an increasing tendency from the metropolis to the rural region was clearly observed in both sexes. Conclusions: Regional mortality differences according to geographic location exist in The Republic of Korea and further research and policy approaches to reduce these differences are needed. to reduce these differences are needed.

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • 제19권1호
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

베이지안 이산모형을 이용한 기술예측 (Technology Forecasting using Bayesian Discrete Model)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.179-186
    • /
    • 2017
  • 기술예측은 과거부터 현재까지의 기술개발 결과를 수집, 분석하여 특정 기술의 미래 추세 및 상태를 예측하는 것이다. 일반적으로 특허는 현재까지의 기술개발 결과를 가장 잘 가지고 있다. 왜냐하면 특허에 포함된 세부 기술은 일정기간 동안 배타적 권리가 법에 의해 보장되기 때문이다. 따라서 특허 데이터의 분석을 이용한 기술예측의 다양한 연구가 진행되었다. 특허문서의 분석을 위하여 널리 사용되는 특허 키워드 데이터는 주로 기술키워드에 대한 빈도 값으로 이루어진다. 기존의 많은 특허분석에서는 회귀분석, 박스-젠킨스 모형 등 연속형 데이터분석 기법이 적용하였다. 하지만 빈도 데이터는 이산형 데이터이기 때문에 이산형 데이터분석 방법을 사용해야 한다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여 베이지안 포아송 이산모형을 이용한 특허분석 방법을 제안한다. 연구방법의 성능평가를 위하여 지금까지 출원, 등록된 애플의 전체특허를 분석하여 향후 기술을 예측하는 사례분석을 수행한다.

시계열자료를 이용한 대기오염과 일별 사망수의 관련성 분석 (Air Pollution and Daily Mortality in Busan using a Time Series Analysis)

  • 서화숙;정효준;이홍근
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1061-1068
    • /
    • 2002
  • To identify possible associations with concentrations of ambient air pollutants and daily mortality in Busan, this study assessed the effects of air pollution for the time period 1999-2000. Poisson regression analysis by Generalized Additive Model were conducted considering trend, season, meteorology, and day-of-the-week as confounders in a nonparametric approach. Busan had a 10% increase in mortality in persons aged 65 and older(95% Cl : 1.01-1.10) in association with IQR in $NO_2$(lagged 2 days). An increase of $NO_2$(lagged 2days) was associated with a 4% increase in respiratory mortality(Cl : 1.02-1.11) and CO(lagged 1 day) showed a 3% increase(Cl : 1.00-1.07).