• 제목/요약/키워드: poisson ratio

검색결과 544건 처리시간 0.03초

The Poisson effect on the curved beam analysis

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • 제19권6호
    • /
    • pp.707-720
    • /
    • 2005
  • The bending stress formula that taking into account the transverse deformation is developed for plane-curved, untwisted isotropic beams subjected to loadings that result in deformations in the plane of curvature. In order to account the transverse Poisson contraction effect, a new constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved plate is derived in a $6{\times}6$ matrix form. This constitutive relation will provide the fundamental basis to the analyses of curved structures composing of isotropic or anisotropic materials. Then, the bending stress formula of a curved isotropic beam can be deduced from this newly developed curved plate theory. The stress predictions by the present analysis are compared to those by the analysis that neglected the Poisson contraction effect. The results show that the Poisson effect becomes more significant as the Poisson ratio and the curvature are getting larger.

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • 제3권1호
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Measurement of Fiber Board Poisson's Ratio using High-Speed Digital Camera

  • Choi, Seung-Ryul;Choi, Dong-Soo;Oh, Sung-Sik;Park, Suk-Ho;Kim, Jin-Se;Chun, Ho-Hyun
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.324-329
    • /
    • 2014
  • Purpose: The finite element method (FEM) is advantageous because it can save time and cost by reducing the number of samples and experiments in the effort to identify design factors. In computational problem-solving it is necessary that the exact material properties are input for achieving a reliable analysis. However, in the case of fiber boards, it is difficult to measure their cross-directional material properties because of their small thickness. In previous research studies, the Poisson's ratio was measured by analyzing ultrasonic wave velocities. Recently, the Poisson's ratio was measured using a high-speed digital camera. In this study, we measured the transverse strain of a fiber board and calculated its Poisson's ratio using a high-speed digital camera in order to apply these estimates to a FEM analysis of a fiber board, a corrugated board, and a corrugated box. Methods: Three different fiber board samples were used in a uniaxial tensile test. The longitudinal strain was measured using the Universal Testing Machine. The transverse strain was measured using an image processing method. To calculate the transverse strain, we acquired images of the fiber board before the test onset and before the fracture occurred. Acquired images were processed using the image processing program MATLAB. After the images were converted from color to binary, we calculated the width of the fiber board. Results: The calculated Poisson's ratio ranged between 0.2968-0.4425 (Machine direction, MD) and 0.1619-0.1751 (Cross machine direction, CD). Conclusions: This study demonstrates that measurement of the transverse properties of a fiber board is possible using image processing methods. Correspondingly, these processing methods could be used to measure material properties that are difficult to measure using conventional measuring methodologies that employ strain gauge extensometers.

Poisson GLR Control Charts (Poisson GLR 관리도)

  • Lee, Jaeheon;Park, Jongtae
    • The Korean Journal of Applied Statistics
    • /
    • 제27권5호
    • /
    • pp.787-796
    • /
    • 2014
  • Situations where sample size is not constant are common when monitoring a process with Poisson count data. In this paper, we propose a generalized likelihood ratio(GLR) control chart to detect shifts in the Poisson rate when the sample size varies. The performance of the proposed GLR chart is compared with the performance of several cumulative sum(CUSUM) type charts. It is shown that the overall performance of the GLR chart is comparable with CUSUM type charts and is significantly better in cases where the actual value of the shift is different from the pre-specified value in CUSUM type charts.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • 제16권2호
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

A Study on the 2-D distribution of Dynamic Poisson's Ratio using 3-C Geophones (3성분 지오폰을 이용한 동포아송비의 2차원 분포 연구)

  • Hong, Myung-Ho;Hwang, Yoon-Gu;Cho, Cheol-Hee;Lee, Yoon-Jung;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 공동학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2005
  • In order to acquire 3 components data which has the good signal to noise ratio with only one shot, 3-C geophones were used, As a result, the vertical component showed the distinct first arrival of P-wave, and the horizontal component was improved the signal to noise ratio of S-wave, while was attenuated P-wave. The 2-D Poisson's ratio section was computed from P- and S-wave cell velocities included velocity tomograms of the P- and S-waves. The Poisson's ratio values were computed in the range of $0.2{\~}0.3$. With one shot, we can obtain 2-D distribution of dynamic Poisson's ratio as well as velocity tomograms of P- and S-waves.

  • PDF

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

A Study on the Power Comparison between Logistic Regression and Offset Poisson Regression for Binary Data

  • Kim, Dae-Youb;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.537-546
    • /
    • 2012
  • In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.