• Title/Summary/Keyword: pointing system

Search Result 231, Processing Time 0.032 seconds

Implementation Issues in Whiteboards of Distance Learning Systems (원격 교육 시스템의 화이트보드 구현시 고려 사항)

  • Lee, Jae-Ho;Kim, Jong-Hoon
    • Journal of The Korean Association of Information Education
    • /
    • v.2 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • The advent of powerful hardware and advances in high speed networks enabled synchronous learning, with teachers and students being geographically distributed but connected via computer networks. Today's synchronous learning systems are mainly based on video conferencing technology which provides audio, video, and joint editing of documents only, but does not take into account the specific requirements of teaching, for instance, controlling the course of instruction, raising hands, or reference pointing. A shared whiteboard is often the core part of these systems. Therefore, in this paper, we look into implementation issues in whiteboards of distance learning systems. Particularly, system architectures and concurrency control mechanisms are considered.

  • PDF

A Study on the Vibration Damping of a Barrel Using Vibration Absorber (동흡진기를 이용한 포신의 진동감쇠에 대한 연구)

  • Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kim, Hun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • Advanced tanks in the future combat system are expected to have the trends of large caliber, high explosive shell and light weight for destructive power and improvement in mobility. Their guns are required to have longer barrels to meet increased muzzle exit velocities. However, as the length of the barrel is extended, the vibrations induced by the breech forces in fire and the terrain lead to increased muzzle pointing errors. Therefore, the fire-induced and terrain-induced vibrations must be attenuated. A method to reduce these vibrations without the significant increase of the gun mass is to use the forward thermal shroud as part of a tuned mass damper. In this study, the dynamically-tuned-shroud using this shroud and leaf springs is introduced and its effectiveness on the vibration attenuations of the barrel are verified. The parametric studies on the stiffness of these leaf springs are performed and the analytical results are verified using the experimental model of the dynamically-tuned-shroud.

How to Keep the Sustainability of the Landscape Resources of the East Coast in South Korea

  • Shin, Seung-Choon;Park, Yong-Gil
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.192-197
    • /
    • 2003
  • The purpose of this study is to present the conditions and methods for keeping the sustainability of the landscape resources of the East Coast of Gangwon province, the republic of Korea by investigating the landscape resources management in the area and pointing out its problems. The problems of the landscape resources management are: 1) the disturbance of the persistence of life by reclamation, the population reduction in the ecosystem due to the overload in environmental capacity, and the severance of space between land and water. 2) the reduction of the benefits from indirect experience by interfering with the conservation of fluxes -- the manipulation of horizontal arrangement of the landscape resource, the visual disturbance by the construction of high-storied buildings, and the disharmony between the color/image and the environment. The means for keeping sustainability of the landscape resources include the regulations of development and use, the change in the recognition of the value of landscape resources and the moral system, and the improvement of resource management skills.

  • PDF

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

Shift Steering Control of 2-axis ARM Helicopter based on a Neural Network (신경망 학습을 이용한 2축 ARM 헬리콥터의 중심이동 조향법)

  • Bae, Hyun-Soo;Kim, Byung-Chul;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.677-683
    • /
    • 2015
  • This paper proposes a helicopter direction adjustment system using barycenter shift. Most conventional methods for direction adjustment of uniaxial helicopters rely on the angle of inclination of the main rotor. However, the inherent burden of the bearing of the main rotor and serious abrasion of the helicopter using the above methods may results in loss of balance. To decrease abrasion and enhance the barycenter stability, the proposed method was used to shift the barycenter of the helicopter instead of the main rotor for direction adjustment. We set a biaxial ARM on a uniaxial helicopter to adjust the direction of ARM pointing as well as to realize stable direction control when the helicopter loses its balance. The method may enhance the landing safety of helicopters in emergencies. Uniaxial helicopters can be controlled under any environment by adjusting the motor parameters of the ARM which is dependent on the center of mass using neural network. The experiment results show that the helicopter can return to the starting position quickly under the external disturbance.

Development of Integrated Simulation Tool for Jitter Analysis

  • Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.64-73
    • /
    • 2012
  • Pointing stability of high precision observation satellites must satisfy the stringent requirements to perform at a designed level. As even a small vibrational disturbance can result in severe degradation of the optical performance, the effects of inorbit vibrational environment on the performance of optical payload must be predicted and analyzed in the design phase in order to ensure that the requirements imposed on the payload are fully met. In this paper, an integrated framework for the evaluation of the performance of optical payloads is developed. The developed simulation tool comprises of the reaction wheel induced disturbance model, state space model of a structure in modal form and Cassegrain reflector model. The performance degradation of the optical system due to jitter is expressed by using modulation transfer function (MTF) and image simulation. Moreover, vibration isolator model is also added to show the effectiveness of using a vibration isolator for the elimination of the effects of jitter in the acquisition of an image.

Efficient Signal Detection Technique Using Orthogonal Sequence for Quantum Communication (직교 시퀀스를 이용한 양자통신에서의 효율적인 신호 검출 기법)

  • Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • For the last 20 years, our country has been pointing to a great power for digital information technology, but quantum information technology which is already researched in many forefront nations lags significantly behind other countries. Recently, quantum information management, quantum computing and quantum communication based on the quantum mechanics have been researching actively in many fields such as cryptology. On the basis of these background, in this paper, to efficient data transmission and detection for quantum data, we apply the orthogonal sequence to quantum communication system. The performance of proposed scheme is analyzed in terms of auto and cross correlation performance.

Dynamics Modeling and Vibration Analysis of Momentum Wheel for the Control Moment Gyros (제어모멘트자이로용 모멘텀휠의 동역학모델링과 진동분석)

  • Park, Jongoh;Myung, Hyunsam;Lee, Henzeh;Bang, Hyochoong;Choo, Yeongyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.180-185
    • /
    • 2009
  • Actuator-induced disturbance is one of the crucial factors of spacecraft attitude pointing and stability in fine attitude control problems. The control moment gyros (CMGs) are known as very attractive actuators from the point of high power and low weight. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model and predict the effect of disturbances of CMGs by assuming static and dynamic imbalances. The proposed model is induced by the Lagrangian method on the basis of the small signal assumption. In this research, mechanical system of the CMG is designed and the main components of CMG are producted.

  • PDF

COronal Diagnostic EXperiment (CODEX)

  • Bong, Su-Chan;Kim, Yeon-Han;Choi, Seonghwan;Cho, Kyung-Suk;Newmark, Jeffrey S;Gopalswamy, Natchimuthuk;Gong, Qian;Reginald, Nelson L.;Cyr, Orville Chris St.;Viall, Nicholeen M.;Yashiro, Seiji;Thompson, Linda D.;Strachan, Leonard
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.82.2-82.3
    • /
    • 2019
  • Korea Astronomy and Space Science Institute (KASI), in collaboration with the NASA Goddard Sparce Flight Center (GSFC), will develop a next generation coronagraph for the International Space Station (ISS). COronal Diagnostic EXperiment (CODEX) uses multiple filters to obtain simultaneous measurements of electron density, temperature, and velocity within a single instrument. CODEX's regular, systematic, comprehensive dataset will test theories of solar wind acceleration and source, as well as serve to validate and enable improvement of space-weather/operational models in the crucial source region of the solar wind. CODEX subsystems include the coronagraph, pointing system, command and data handling (C&DH) electronics, and power distribution unit. CODEX is integrated onto a standard interface which provides power and communication. All full resolution images are telemeters to the ground, where data from multiple images and sequences are co-added, spatially binned, and ratioed as needed for analysis.

  • PDF

A Study on Satellite Alignment Measurements Accuracy Improvement (인공위성 정렬 측정 정확도 향상을 위한 연구)

  • Choi, Jung Su;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.987-995
    • /
    • 2020
  • Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.