• 제목/요약/키워드: point-stress failure criterion

검색결과 22건 처리시간 0.02초

Laminate Tensile Failure Strength Prediction using Stress Failure Criteria

  • Lee, Myoung Keon;Kim, Jae Hoon
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.19-25
    • /
    • 2021
  • This paper presents a method that uses the stress failure criteria to predict the tensile failure strength of open-hole laminates with stress concentrations. The composite material used in this study corresponds to a 177 ℃ cured, carbon/epoxy unidirectional tape prepreg. The results obtained by testing ten different laminates were compared and analyzed to verify the tensile strength of the open-hole laminates predicted using the proposed stress failure criteria. The findings of this study confirm that the tensile strength predictions performed using the proposed method are generally accurate, except in cases involving highly soft laminates (10% of 0° ply).

원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건 (Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes)

  • 김정규;김도식
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1285-1293
    • /
    • 1992
  • 본 연구에서는 glass/epoxy 직조된 복합재료에 있어서 원공 및 판폭의 크기가 노치강도에 미치는 영향을 명확히 하고, 또한 노치강도 및 파괴조건과 위에서 언급한 특성길이와의 관계를 검토하였다.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Stability condition for the evaluation of damage in three-point bending of a laminated composite

  • Allel, Mokaddem;Mohamed, Alami;Ahmed, Boutaous
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.203-220
    • /
    • 2013
  • The study of the tensile strength of composite materials is far more complex than analysis of the properties of elasticity and plasticity. Indeed, during mechanical loading, micro-cracks in the matrix, the fibers break, debonding of the interfaces are created. The failure process of composites is of great diversity and cannot be described if even we know: the strength criterion of each individual component, the state of stress and strain in the material, the propagation phenomena cracks in the structure and nature of the interface between the matrix and the reinforcement. This information is only partially known and the obtained by the analysis of a stress limit beyond which there is destruction of the material is almost impossible. To partially process the issue, a solution lies in a mesoscopic approach of seeking a law to locate the ultimate strength of the material for a plane stress state. Tests on rectangular plates in bending PEEK/APC2 and T300/914 three were made and this in order to validate our approach, the calculation has been implemented in a nonlinear finite element code (Castem 2000), in order to make comparison with the numerical results. The results show good agreement between numerical simulation and the two materials; however, it would be interesting to consider other phenomena in the criterion.

전투용 차량의 경량화 최적설계 기법 연구 (Minimum Weight Design Method for Infantry Fighting Vehicles Hull using Thick Composite Laminate)

  • 김건인;조맹효;구만회
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.9-16
    • /
    • 2001
  • In this paper, general design process for Tracked Fighting Vehicle has been suggested. Stress analysis and optimal design for ply angle of IFV's composite upper hull has been calculated using KMA CIFV and it is contained exploratory development of design process. In this point, this paper applied composite to IFV's upper hull. Finite element mesh has been made using Matlab program, and we have analyzed stress based on the given material properties and ply arrangement. For each load condition, load distribution in plane and failure index are calculated by using Tasi-Hill criterion, which is composite failure criterion and analyzing change of failure index as change of ply angle. Finally, optimal ply angles of upper hull are calculated using KMA CIFV. We can estimate the decrease of weight for IFV's upper hull.

  • PDF

A physically consistent stress-strain model for actively confined concrete

  • Shahbeyk, Sharif;Moghaddam, Mahshid Z.;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.85-97
    • /
    • 2017
  • With a special attention to the different stages of a typical loading path travelled in a fluid confined concrete test, this paper introduces a physically consistent model for the stress-strain curve of actively confined normal-strength concrete in the axial direction. The model comprises of the five elements of: (1) a criterion for the peak or failure strength, (2) an equation for the peak strain, (3) a backbone hydrostatic curve, (4) a transient hardening curve linking the point of departure from the hydrostatic curve to the failure point, and finally (5) a set of formulas for the post-peak region. Alongside, relevant details and shortcomings of existing models will be discussed in each part. Finally, the accuracy and efficiency of the proposed model have been verified in a set of simulations which compare well with the experimental results from the literature.

특성 길이를 이용한 평직 복합재 볼트 체결부의 강도 예측 (Strength Prediction of Bolted Woven Composite Joint Using Characteristic Length)

  • 박승범;변준형;안국찬
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.8-15
    • /
    • 2003
  • A study on predicting the joint strength of mechanically fastened woven glass/epoxy composite has been performed. An experimental and numerical study were carried out to determine the characteristic length and joint strength of composite joint. The characteristic lengths for tension and compression were determined from the tensile and compressive test with a hole respectively. The characteristic lengths were evaluated by applying the point stress failure criterion to a specimen containing a hole at the center subjected to tensile loading and a specimen containing a half circular notch at the center subjected to compressive load. The joint strength was evaluated by the Tsai-Wu and Yamada-Sun failure criterion on the characteristic curve. The predicted results of the joint strength were compared with experimental results.

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang;Zhang, Li-Juan;Ji, Xiao-Ming
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.71-86
    • /
    • 2013
  • For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.