• Title/Summary/Keyword: point-countable

Search Result 13, Processing Time 0.015 seconds

COMMON FIXED POINT THEOREMS FOR COMPATIBLE MAPPINGS OF TYPE (A) AND (P) WITH APPLICATIONS IN DYNAMIC PROGRAMMING

  • Jiang, Guojing;Liu, Min;Lee, Suk-Jin;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.1
    • /
    • pp.11-26
    • /
    • 2009
  • In this paper, the concepts of compatible mappings of types (A) and (P) are introduced in an induced metric space, two common xed point theorems for two pairs of compatible mappings of types (A) and (P) in an induced complete metric space are established. As their applications, the existence and uniqueness results of common solution for a system of functional equations arising in dynamic programming are discussed.

WEAKLY ALMOST PERIODIC POINTS AND CHAOTIC DYNAMICS OF DISCRETE AMENABLE GROUP ACTIONS

  • Ling, Bin;Nie, Xiaoxiao;Yin, Jiandong
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.39-52
    • /
    • 2019
  • The aim of this paper is to introduce the notions of (quasi) weakly almost periodic point, measure center and minimal center of attraction of amenable group actions, explore the connections of levels of the orbit's topological structure of (quasi) weakly almost periodic points and study chaotic dynamics of transitive systems with full measure centers. Actually, we showed that weakly almost periodic points and quasiweakly almost periodic points have distinct orbit's topological structure and proved that there exists at least countable Li-Yorke pairs if the system contains a proper (quasi) weakly almost periodic point and that a transitive but not minimal system with a full measure center is strongly ergodically chaotic.

A research on Mathematical Invention via Real Analysis Course in University (대학교의 해석학 강좌에서 학생들의 수학적 발명에 관한 연구)

  • Lee, Byung-Soo
    • Communications of Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.471-487
    • /
    • 2008
  • Inventive mathematical thinking, original mathematical problem solving ability, mathematical invention and so on are core concepts, which must be emphasized in all branches of mathematical education. In particular, Polya(1981) insisted that inventive thinking must be emphasized in a suitable level of university mathematical courses. In this paper, the author considered two cases of inventive problem solving ability shown by his many students via real analysis courses. The first case is about the proof of the problem "what is the derived set of the integers Z?" Nearly all books on mathematical analysis sent the question without the proof but some books said that the answer is "empty". Only one book written by Noh, Y. S.(2006) showed the proof by using the definition of accumulation points. But the proof process has some mistakes. But our student Kang, D. S. showed the perfect proof by using The Completeness Axiom, which is very useful in mathematical analysis. The second case is to show the infinite countability of NxN, which is shown by informal proof in many mathematical analysis books with formal proofs. Some students who argued the informal proof as an unreasonable proof were asked to join with us in finding the one-to-one correspondences between NxN and N. Many students worked hard and find two singled-valued mappings and one set-valued mapping covering eight diagrams in the paper. The problems are not easy and the proofs are a little complicated. All the proofs shown in this paper are original and right, so the proofs are deserving of inventive mathematical thoughts, original mathematical problem solving abilities and mathematical inventions. From the inventive proofs of his students, the author confirmed that any students can develope their mathematical abilities by their professors' encouragements.

  • PDF