• 제목/요약/키워드: point-cloud

검색결과 853건 처리시간 0.022초

Incremental Bundle Adjustment와 스테레오 영상 정합 기법을 적용한 무인항공기 영상에서의 포인트 클라우드 생성방안 연구 (A Study on Point Cloud Generation Method from UAV Image Using Incremental Bundle Adjustment and Stereo Image Matching Technique)

  • 이수암;황윤혁;김수현
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.941-951
    • /
    • 2018
  • 3차원 도시모델의 생성을 위한 무인항공기의 활용 및 수요가 증가하고 있다. 본 연구에서는 3D 도시 모델 생성의 선행 연구로 불완전한 자세에서 취득된 무인항공기의 위치/자세 정보를 보정하여 포인트 클라우드를 추출하는 연구를 수행했다. 포인트 클라우드의 추출을 위해서는 정밀한 센서모델의 수립이 선행되어야 한다. 이에 무인항공기의 위치/자세 보정을 위해 무인항공기 영상에 기록된 위치정보의 연속성을 이용하여 회전각을 산출하고, 이를 초기값으로 하는 사진 측량 기반의 IBA(Incremental Bundle Adjustment)를 적용하여 보정된 위치/자세 정보를 획득했다. 센서모델 정보를 통해 스테레오 페어 구성이 가능한 영상들을 자동으로 선별하고 페어간의 타이포인트 정보를 이용해 원본 영상을 에피폴라 영상으로 변환했으며, 변환된 에피폴라 스테레오 영상은 고속, 고정밀의 영상 정합기법인 MDR (Multi-Dimensional Relaxation)의 적용을 통해 포인트 클라우드를 추출했다. 각 페어에서 추출된 개별 포인트 클라우드는 집성 과정을 거쳐 하나의 포인트 클라우드 혹은 DSM의 최종 산출물 형태로 출력된다. 실험은 DJI社 무인항공기에서 취득된 연직 및 경사 촬영 영상을 사용했으며, 실험을 통해 건물의 난간, 벽면 등이 선명하게 표현되는 포인트 클라우드 추출이 가능함을 확인하였다. 향후에는 추출된 포인트 클라우드를 이용한 3차원 건물 추출 연구를 통해 3차원 도시모델의 생성을 위한 영상 처리기술을 계속 발전시켜나가야 할 것이다.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

Performance Analysis of Cloud Rendering Based on Web Real-Time Communication

  • Lim, Gyubeom;Hong, Sukjun;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.276-284
    • /
    • 2022
  • In this paper, we implemented cloud rendering using WebRTC for high-quality AR and VR services. Cloud rendering is an applied technology of cloud computing. It efficiently handles the rendering of large volumes of 3D content. The conventional VR and AR service is a method of downloading 3D content. The download time is delayed as the 3D content capacity increases. Cloud rendering is a streaming method according to the user's point of view. Therefore, stable service is possible regardless of the 3D content capacity. In this paper, we implemented cloud rendering using WebRTC and analyzed its performance. We compared latency of 100MB, 300MB, and 500MB 3D AR content in 100Mbps and 300Mbps internet environments. As a result of the analysis, cloud rendering showed stable latency regardless of data volume. On the other hand, the conventional method showed an increase in latency as the data volume increased. The results of this paper quantitatively evaluate the stability of cloud rendering. This is expected to contribute to high-quality VR and AR services

클라우드 서비스 중개를 위한 가변성 기반의 서비스 명세 기법 (Variability-based Service Specification Method for Brokering Cloud Services)

  • 안영민;박준석;염근혁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권12호
    • /
    • pp.664-669
    • /
    • 2014
  • 클라우드 컴퓨팅 패러다임이 성행하면서 IaaS, PaaS, SaaS 유형의 클라우드 서비스가 나타나고 있다. 제공되는 클라우드 서비스의 다양화로 인해 클라우드 테넌트(사용자)의 요구사항에 적합한 클라우드 서비스를 중개하는 기술인 서비스 브로커 기술이 최근 들어 관심을 받고 있다. 클라우드 서비스를 중개하기 위해서 다양한 클라우드 서비스의 체계적인 등록, 분석, 검색을 지원할 수 있는 클라우드 서비스 명세 모델이 필요하다. 본 논문은 다양한 유형의 클라우드 서비스를 명세하기 위한 가변성 기반의 클라우드 서비스 분석 모델(SAM)을 제시한다. SAM은 소프트웨어 프로덕트 라인의 가변성 개념을 적용하여 클라우드 서비스를 명세할 때 기능, 품질, 가격 측면에서 나타날 수 있는 가변점에 가변값을 바인딩함으로써 클라우드 서비스의 공통성과 가변성을 나타낸다. 또한, SAM을 이용하여 테넌트에게 클라우드 서비스를 중개하는 브로커로서의 가상 클라우드 뱅크의 구조를 제안한다.

Ultrasonic-assisted Micellar Extraction and Cloud-point Pre-concentration of Major Saikosaponins in Radix Bupleuri using High Performance Liquid Chromatography with Evaporative Light Scattering Detection

  • Suh, Joon-Hyuk;Yang, Dong-Hyug;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2637-2642
    • /
    • 2011
  • A new ultrasonic-assisted micellar extraction and cloud-point pre-concentration method was developed for the determination of major saikosaponins, namely saikosaponins -A, -C and -D, in Radix Bupleuri by high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The non-ionic surfactant Genapol X-080 (oligoethylene glycol monoalkyl ether) was chosen as the extraction additive and parameters affecting the extraction efficiency were optimized. The highest yield was obtained with 10% (w/v) Genapol X-080, a liquid/solid ratio of 200:1 (mL/g) and ultrasonic-assisted extraction for 40 min. In addition, the optimum cloud-point pre-concentration was reached with 10% sodium sulfate and equilibration at $60^{\circ}C$ for 30 min. Separation was achieved on an Ascentis Express C18 column (100 ${\times}$ 4.6 mm i.d., 2.7 ${\mu}M$) using a binary mobile phase composed of 0.1% acetic acid and acetonitrile. Saikosaponins were detected by ELSD, which was operated at a $50^{\circ}C$ drift tube temperature and 3.0 bar nebulizer gas ($N_2$) pressure. The water-based solvent modified with Genapol X-080 showed better extraction efficiency compared to that of the conventional solvent methanol. Recovery of saikosaponins ranged from 93.1 to 101.9%. An environmentally-friendly extraction method was successfully applied to extract and enrich major saikosaponins in Radix Bupleuri.

드론 촬영 영상을 활용한 3D 라이브러리 플랫폼 구축 및 강화지석묘에의 적용 (3D Library Platform Construction using Drone Images and its Application to Kangwha Dolmen)

  • 김경호;김민정;이정진
    • 만화애니메이션 연구
    • /
    • 통권48호
    • /
    • pp.199-215
    • /
    • 2017
  • 최근 군사적 목적으로 제작된 드론의 활용이 일반적인 용도로 그 사용처가 확대되고 있다. 콘텐츠 제작에 있어 드론이 활발하게 사용되고 있는데 특히 영상 촬영 분야에서 가장 눈에 띄게 나타나고 있다. 본 논문에서는 드론에서 촬영된 2차원 영상 데이터를 이용하여 포인트 클라우드 및 3차원 모델을 생성하고 메쉬 데이터를 3차원 라이브러리로 모듈화한 플랫폼을 개발한다. 이를 위하여 먼저 드론을 이용하여 2차원 영상 데이터를 취득하고, 취득된 2차원 영상 데이터를 기반으로 하여 포인트 클라우드를 생성하고, 추출된 포인트 클라우드를 3차원 메쉬 데이터로 변환한 후 변환되어진 3차원 데이터를 다양한 분야에 활용될 수 있도록 서비스 라이브러리 플랫폼을 개발한다. 본 논문에서 개발된 플랫폼은 촬영된 데이터를 3차원 데이터로 변환하여 영화, 드라마, 다큐멘터리 등의 제작 시에 특수 영상을 위한 실제 세트 제작 비용 절감 및 시간을 단축 할 수 있고, 실감 미디어 및 특수 영상, 전시 영상 분야의 디지털 콘텐츠 제작 전문 인력 창출에 기여 할 수 있다.

건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구 (A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP)

  • 김지은;박상철;강태욱
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5695-5706
    • /
    • 2015
  • 최근 국내외 건설 분야에서 건축물 리노베이션 및 유지보수를 위한 BIM 적용이 활발해지는 추세이나, 상당수 기존 건축물이 현 상태를 반영하지 않은 2D 도면을 보유함에 따라 이를 바탕으로 한 BIM 모델 작성이 어려운 상황이다. 따라서 본 연구는 역설계 기술을 활용하고자, 건축 MEP 역설계 지침을 위한 포인트 클라우드 데이터 관련 데이터 구조 및 프로세스를 분석하고, 역설계 지침을 위한 고려사항을 도출하였다. 국내 시장에서 3차원 스캐닝 기술의 활발한 적용을 위해, 프로젝트 수행 초기 단계인 지상 라이다를 이용한 현장에 대한 데이터 취득, 취득 단계에서 얻은 포인트 클라우드 데이터의 기초 처리 및 프로세스 분석에 대해 연구 목적을 두고 있다.

3차원 점군데이터의 깊이 영상 변환 방법 및 하드웨어 구현 (Conversion Method of 3D Point Cloud to Depth Image and Its Hardware Implementation)

  • 장경훈;조기쁨;김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2443-2450
    • /
    • 2014
  • 깊이 영상을 이용한 동작 인식 시스템에서는 효율적인 알고리즘 적용을 위하여 깊이 영상을 3차원 점군 데이터로 구성되는 실제 공간으로 변환하여 알고리즘을 적용한 후 투영공간으로 변환하여 출력한다. 하지만 변환 과정 중 반올림 오차와 적용되는 알고리즘에 의한 데이터 손실이 발생하게 된다. 본 논문에서는 3차원 점군 데이터에서 깊이 영상으로의 변환 시 반올림 오차와 영상의 크기 변화에 따른 데이터 손실이 발생하지 않는 효율적인 방법과 이를 하드웨어로 구현 하는 방법을 제안 하였다. 최종적으로 제안된 알고리즘은 OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 알고리즘을 검증하였고, Kinect를 사용하여 실시간으로 성능을 테스트하였다. 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx Zynq-7000 FPGA 보드에 탑재하여 검증하였다.

3차원 포인트 클라우드 기반 Alpha Shape와 Voxel을 활용한 단일 식생 부피 산정 (Estimation of Single Vegetation Volume Using 3D Point Cloud-based Alpha Shape and Voxel)

  • 장은경;안명희
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.204-211
    • /
    • 2021
  • 본 연구에서는 3차원 지상 라이다 스캐너를 통해 수집되는 포인트 클라우드를 활용하여 식생의 정보를 수집하였으며, 수집된 데이터를 기반으로 객체를 재구현하여 물리적 형상을 분석하였다. 이를 위해 원시 데이터의 필터링 단계별 최적의 데이터를 구축하였으며, 구축된 데이터를 활용하여 실제 부피와 Alpha Shape 및 Voxel 기법을 활용한 부피 산정 결과를 산정한 후 각각 비교하였다. 분석 결과, Alpha Shape를 적용하여 부피를 산정한 경우 데이터 필터링과 관계없이 실제 부피보다 과다 산정되는 것으로 나타났다. 또한 Voxel 기법을 활용할 경우 8차 필터링 후 실제 부피와 가장 유사한 것으로 나타났으며, 이후 필터링이 진행될수록 실제 부피에 비해 과소 산정되는 것을 알 수 있었다. 따라서 포인트 클라우드를 활용하여 객체를 재구현 할 경우, 대상이 되는 객체의 복잡한 형상으로 인한 내부 공극을 고려해야 하며, 필터링 과정에서 최적의 데이터 구축을 위한 필터링 과정에 반드시 주의할 필요가 있다.

포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축 (Automated Construction of IndoorGML Data Using Point Cloud)

  • 김성환;이기준
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.611-622
    • /
    • 2020
  • 실내공간에 대한 측위 기술과 함께 LiDAR (Light Detection And Ranging)나 카메라와 같이 공간을 측정 장비가 발달하면서 실내공간에 대한 분석과 탐색, 가상현실이나 증강현실을 통한 시각화 서비스에 대한 수요가 증가하고 있다. 이를 위해서는 실제 세계로부터 측정된 데이터를 이용하여 3차원 객체로 모델링하는 작업이 필요하다. 또한 이렇게 구조화된 데이터의 가용성과 상호운용성을 높이기 위하여 표준화된 규격으로 저장하는 것도 매우 중요하다. 본 논문에서는 LiDAR 장비를 통해 획득한 포인트 클라우드 데이터를 이용하여 실내공간을 표현하기 위한 국제표준인 IndoorGML 데이터를 자동적으로 구축하는 방법을 제안하고자 한다. IndoorGML 데이터를 구성하는 과정에서 고려해야 할 점들을 살펴본 후, 자유공간추출과 연결성 검출 과정으로 이루어진 데이터 구축 과정을 통하여 실제로 IndoorGML 데이터를 구축한다. 실험을 통하여 제안 기법이 입력 포인트 클라우드로부터 3차원 데이터 모델을 효과적으로 재구성할 수 있음을 검증한다.