• Title/Summary/Keyword: point source waves

Search Result 47, Processing Time 0.029 seconds

Numerical Analysis of Waves from Point Source in Variable Depth Using Parabolic Wave Equation in Polar Coordinates (極座標 抛物形 波動方程式을 이용한 變數深 点源波의 數値解析)

  • 곽문수;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.68-74
    • /
    • 1999
  • The Green function method is widely used for the analysis of waves in a harbor with a constant depth. In extending this method to a wave field over arbitrary depth, a generalized and convenient method is needed to obtain unit solutions for waves emerging from a point source. For this purpose, a parabolic wave equation is derived to approximate the mild-slope equation written in terms of polar coordinates. Usefulness of the equation obtained is examined through trial computations.

  • PDF

Wavefront Aberration Measurement of DVD pick-up lenses with a Shack-Hartmann Sensor and a Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 DVD 픽업 렌즈의 수차 측정)

  • Kang, Dong-Won;Lee, Jin-Seok;Hahn, Jae-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.135-138
    • /
    • 2007
  • Using a Shack-Hartmann sensor and sub-wavelength sized pinhole point source, we develope an optical testing system that measures the wavefront error of high numerical aperture and small sized optical components. The subwavelength sized pinhole generates perfect spherical waves with large diffraction angle and this makes possible to test high numerical aperture optics. The Shack-Hartmann sensor reconstructs the wavefront and calculates the aberrations. We make a home-made reference plane wave source which generates nearly perfect plane waves and the calibration with this plane source gives the overall uncertainty of the optical testing system 0.010 $\lambda$ rms.

  • PDF

A Study on the Motion of a Single Point Moored Ship in Irregular Waves (불규칙파중 1점계류 선바의 거동해석에 관한 연구)

  • Lee, Seung-Keon;Jo, Hyo-Jae;Kang, Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • The maneuvering equations of motion are derived to express the motion of a ship. The wave forces in the time domain analysis are generated from the frequency transfer function calculated by 3-D source distribution method. The linear wave forces whose periods are equal to those of incident waves and the nonlinear wave forces that make long period drift forces are computed for the simulation. The consideration of irregular waves and nonlinear wave force effects on the slew motion are carried on the analyzing the motion of ship in the regular and irregular waves.

Wavefront Aberration Measurement with Shack-Hartmann Sensor and Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 광학부품의 수차 측정)

  • Lee, Jin-Seok;Kim, Hak-Young;Park, Yong-Pil;Park, No-Cheol;Hahn, Jae-Won
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.160-161
    • /
    • 2005
  • Using a Shack-Hartmann sensor, we construct an optical testing system measuring the wavefront error of small optical components. The systematic error of the sensor is compensated with a reference plane-wave system that produces almost perfect plane waves. Several types of lenses are tested using a point source that generates spherical waves emitted from a pinhole. The results of the optical testing obtained with the Shack- Hartman sensor are compared with those measured with Zygo interferometer.

  • PDF

A Fault Location Algorithm Using Wavelet Transformation for HVDC Cables (웨이블렛 변환을 이용한 HVDC 케이블 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1311-1317
    • /
    • 2008
  • In this paper, a fault location algorithm using wavelet transform is proposed for HVDC cable lines. The arriving instants of the first and second fault-induced backward travelling waves can be detected by using wavelet transform. The fault distance is estimated by using the time difference between the two instants of backward travelling waves and the velocity of the travelling wave. To distinguish between the backward wave from fault point and the backward wave from the remote end, polarities of backward waves are used. The proposed algorithm is verified varying with fault distances and fault resistances in underground cables of VSC(voltage source converter) HVDC system and CSC(Current Source Converter) HVDC respectively. Performance evaluations of the proposed algorithm shows that it has good ability for a fault location of HVDC cable faults.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

A time-dependent propagation of nonlinear magnetosonic waves in the interplanetary space with solar wind

  • Kim, Kyung-Im;Lee, Dong-Hun;Kim, Khan-Hyuk;Kim, Ki-Hong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2010
  • A magnetosonic wave is a longitudinal wave propagating perpendicularly to the magnetic fields and involves compression and rarefaction of the plasma. Lee and Kim (2000) investigated the theoretical solution for the evolution of nonlinear magnetosonic waves in the homogeneous space which adopt the approach of simple waves. We confirm the solution using a one-dimensional MHD code with Total Variation Diminishing (TVD) scheme. Then we apply the solution for the solar wind profiles. We examined the properties of nonlinear waves for the various initial perturbations at near the Lagrangian (L1) point. Also we describe waves steepening process while the shock is being formed by assuming different timescales for a driving source.

  • PDF

Diffraction-Induced Wave Setup inside Harbor

  • Oh, Tae-Myoung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.130-133
    • /
    • 1998
  • This paper identifies diffraction-induced wave setup when waves enter into a harbor of constant depth through a breakwater gap narrower than one wave length. It is well known, for this case, that the waves in the lee of the breakwater propagate as if from a point source and the wave crest lines are approximated well by semicircular arcs. Wave height decreases in accordance with conservation of energy; thereby resulting in an appreciable setup of the surface. (omitted)

  • PDF

Synthetic Seismograms of Non-geometric S* and P* Waves Using the Reflectivity Method (반사도 기법에 의한 비기하적 S* 및 P* 파의 합성 계산)

  • Hong, Dong Hee;Baag, Chang Eob
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.393-409
    • /
    • 1990
  • Synthetic seismograms and deduced characteristic properties of the non-geometrical $S^*$ and $P^*$ waves are presented. These waves are excited on the free surface or an interface between two different media by an inhomogeneous P wave from a point source nearby, and propagate as homogeneous waves in the media. Synthetic seismograms are computed using an extended reflectivity method designed for buried source and receiver. An efficient computational procedure for propagator matrices of layers is devised to reduce the computational time and the RAM memory size in the implementation of the reflectivity method. Radiation patterns are obtained from the particle motions of the four types of the "*" waves, i.e., the $S^*$ wave generated near the free surface, and the reflected $S^*$, transmitted $S^*$ and transmitted $P^*$ waves generated near an interface. Some patterns show polarity changes of displacements and others reveal monotonic or non-monotonic variation of amplitude depending on the velocity structure. The decaying trend of amplitude with increasing epicentral distance are also shown for the head wave type of the "*" waves.

  • PDF

Absolute position measurement by lateral shearing interferometry of point-diffracted spherical waves (점회절 구면파의 전단 간섭계를 이용한 절대위치 측정)

  • Chu J.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.25-26
    • /
    • 2006
  • The method measuring the absolute position of a point diffraction source emitting a spherical wavefront in three-dimension is proposed. Two-dimensional interference of spherical wavefronts is used to overcome ambiguity of phase order. The spherical wavefront is explicated by Taylor series expansion, from which a radius of curvature of a spherical wavefront and its center position in three-dimension are obtainable. The spherical wavefront is reconstructed by a modified lateral shearing interferometer, which uses single-mode fiber as a point diffraction source.

  • PDF