• Title/Summary/Keyword: point source model

Search Result 583, Processing Time 0.037 seconds

Switching Voltage Modeling and PWM Control in Multilevel Neutral-Point-Clamped Inverter under DC Voltage Imbalance

  • Nguyen, Nho-Van;Nguyen, Tam-Khanh Tu;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.504-517
    • /
    • 2015
  • This paper presents a novel switching voltage model and an offset-based pulse width modulation (PWM) scheme for multilevel inverters with unbalanced DC sources. The switching voltage model under a DC voltage imbalance will be formulated in general form for multilevel neutral-point-clamped topologies. Analysis of the reference switching voltages from active and non-active switching voltage components in abc coordinates can enable voltage implementation for an unbalanced DC-source condition. Offset voltage is introduced as an indispensable variable in the switching voltage model for multilevel voltage-source inverters. The PWM performance is controlled through the design of two offset components in a subsequence. One main offset may refer to the common mode voltage, and the other offset restricts its effect on the quality of PWM control in related DC levels. The PWM quality can be improved as the switching loss is reduced in a discontinuous PWM mode by setting the local offset, which is related to the load currents. The validity of the proposed algorithm is verified by experimental results.

The first application of modified neutron source multiplication method in subcriticality monitoring based on Monte Carlo

  • Wang, Wencong;Liu, Caixue;Huang, Liyuan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.477-484
    • /
    • 2020
  • The control rod drive mechanism needs to be debugged after reactor fresh fuel loading. It is of great importance to monitor the subcriticality of this process accurately. A modified method was applied to the subcriticality monitoring process, in which only a single control rod cluster was fully withdrawn from the core. In order to correct the error in the results obtained by Neutron Source Multiplication Method, which is based on one point reactor model, Monte Carlo neutron transport code was employed to calculate the fission neutron distribution, the iterated fission probability and the neutron flux in the neutron detector. This article analyzed the effect of a coarse mesh and a fine mesh to tally fission neutron distributions, the iterated fission probability distributions and to calculate correction factors. The subcriticality before and after modification is compared with the subcriticality calculated by MCNP code. The modified results turn out to be closer to calculation. It's feasible to implement the modified NSM method in large local reactivity addition process using Monte Carlo code based on 3D model.

The Real -Time Dispersion Modeling System

  • Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.215-221
    • /
    • 2002
  • The real-time modeling system, named AirWatch System, has been developed to evaluate the environmental impact from a large source. It consists of stack TMS (TeleMetering System) that measures the emission data from the source, AWS (Automatic Weather Station) that monitors the weather data and computer system with the dispersion modeling software. The modeling theories used in the system are Gaussian plume and puff models. The Gaussian plume model is used for the dispersion in the simple terrain with a point meteorological data while the puff model is for the dispersion in complex terrain with three dimensional wind fields. The AirWatch System predicts the impact of the emitted pollutants from the large source on the near-by environment on the real -time base and the alarm is issued to control the emission rate if the calculated concentrations exceed the modeling significance level.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Analysis of Non-Point Source Pollution Reduction using Water Sensitive Urban Design in Gimhae, South Korea (김해시 물 순환 개선 도시계획에 의한 비점오염물질 저감효과 분석)

  • Jung, Kang-Young;Kim, Shin;Kwon, Hun-Gak;Yang, Duk Seok;Kim, Kyosik;Jang, Kwang-Jin;Shin, Dong-Seok;Ahn, Jung-Min
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1499-1509
    • /
    • 2016
  • This study was performed to analyze the effects of a water circulation green area plan on non-point source pollution in Gimhae South Korea. A quantitative analysis of Arc-GIS data was conducted by applying a watershed model based on Fortran to investigate the changes to direct runoff and pollution load. Results showed that prior to the implementation of the water circulation green area plan in Gimhae, direct runoff was $444.05m^3/year$, total biological oxygen demand (BOD) pollution load was 21,696 kg/year, and total phosphorus (TP) pollution load was 1,743 kg/year. Implementation of the development plan was found to reduce direct runoff by 2.27%, BOD pollution load by 1.16% and TP pollution load by 0.19% annually. The reduction in direct runoff and non-point source pollution were attributed to improvements in the design of impermeable layers within the city.

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Study on Utilizing Resources in Ecopolis -Evaluation of the Potential Heat Capacity of Sewage For Utilizing as Sewage Energy- (생태도시에서의 자원활용에 관한 연구 -하수 에너지 활용을 위한 보유열량 평가-)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.583-591
    • /
    • 2003
  • The research on potential energy was conducted to conserve the high-exergy energy like primary energy and utilize waste heat from sewage. From the Point of view in using the waste heat, the energy Potential of waste water from the model house was simulated. From the results, when the heated water was supplied to the model house side in order to put unused energy to Practice use, heated water had higher energy Potential than unheated water, which was due to the discharge of most of unused energy. The possessing heat capacity of sewage from heated water was increased to 40-70 percents in comparison with that from the unheated water. Therefore, it can be used as energy source for improving coefficient of performance of heat pumps. By adopting the multiple heat pump into a model house, It showed that the possessing heat capacity of sewage was reduced. It was also found that the heat was recovered as energy source fur multiple heat pump in a model house.

Salt and Sand Transport from Aral Sea Basin

  • Lee, Kwi-Joo;Shugan, Igor;Park, Na-Ra;Begmatov, A.;Mamatova, N.T.;Lee, Chung-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2005
  • Model for dust and salt transportation from the dried bottom of the Aral Sea is suggested. Theoretical analysis is based on the turbulent diffusion equation for the averaged function of passive impurity concentration. One-layer model of the atmospheric boundary layer is assumed. Impurity precipitation rates are calculated as the functions of the particle size and the distance source of particles. Analytical solutions for the point and two-dimensional sources of impurities are found. Model calculations for salt and sand transport from the Aral Sea basin are made on the basis of 2D source model with a constant intensity.

Approximations for Array of Point Sources in Groundwater Contaminant Transport Modeling (지하수 오염물질 이동모형에 있어서 배열된 점원의 근사방법 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.132-136
    • /
    • 1988
  • A strategic question in groundwater contaminant transport modeling is whether we need to treat waste packages or drums as individual, discrete sources or as approximately lumped sources. In this paper we present analyses of array sources in porous media. We analyze a planar array of sources in porous media with groundwater flow. We compare the concentration field predicted by a detailed model of individual point sources to concentration fields predicted by an infinite plane source and a single point source, all of the same equivalent strength. From this study we identified three regions: (1) a region close to the sources where the effects of adjacent sources are significant and individual source models should be used, (2) a region extending from a few meters to hundreds to thousands of meters downstream, where an equivalent source of infinite extent gives accurate results, and (3) a far-field region, where in an equivalent source of finite extent gives accurate results.

  • PDF

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • Proceedings of the KSEEG Conference
    • /
    • 2005.04a
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF