• Title/Summary/Keyword: point estimation

Search Result 2,112, Processing Time 0.031 seconds

An Analysis on the Preference and Use-Demand Forecasting of Bus Information (버스정보의 선호도 및 이용수요 예측에 관한 연구)

  • Lee, Won Gyu;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.791-799
    • /
    • 2008
  • To build the system which has high utilization and usefulness for users, it is necessary to know the information type and use-demand that the use want. The purpose of this study is to forecast the preference and demand of utilization for bus information when bus information is offered through cellular phon. The accomplishments of this research are as follow : Firstly, importance on the level of individual factor and the value of change's figure can be evaluated, using preference analysis on bus information by conjoint analysis. Secondly, by establishing the use-demand model bus information using binary logit model, influence factor on whether or not the use of the user. Finally, ordered probit model was built by use behavior model in payment per call or per month of potential user of bus information. Through call times and sensitive analysis by payment methods, elasticity point, optimal payment fee, and use probability was analyzed. This study make application as basic to efficient bus information policy and to improve use rate of bus information in future because this study make it possible to get preference analysis, use-demand analysis and estimation of optimal payment fee which is reflecting various requirement in use of bus information user.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

A Study of the 'Sinchungmyeong Jochong(辛丑銘鳥銃)' at the National Museum of Korea - Attribute analysis and point of use estimation - (국립중앙박물관 소장 '신축명 조총(辛丑銘鳥銃)'연구 - 속성 분석과 운용 시기 추정을 중심으로 -)

  • KIM Myunghoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.6-22
    • /
    • 2023
  • The National Museum of Korea's 'Shinchungmyeong Jochong' is the sole firearm in the country bearing inscriptions written in ink('辛丑改備江華庫藏'). Thanks to this written record, it is possible to determine where this firearm was stored and to make an estimate of the time when it was stored. Additionally, it is a valuable artifact that has been exceptionally well preserved and has an artistic design. However, research into the operational period, form, and structural characteristics of this firearm has been limited to date. This study aimed to shed light on the operational period, form, and structural features of the 'Shinchukmyeong Jochong.' To achieve this, the specifications and structural characteristics of the firearm were examined, and comparisons were made with 17 other extant firearms and their attributes. The results confirmed that the 'Shinchungmyeong Jochong' is a representative example of the typical firearms of the Joseon Dynasty. Next, the timing, background, and production subject of the Ganghwado containment of the Jochong were tracked based on letters found with the Jochong. The investigation revealed an entry in the 'Records of King Jeongjo'(『正祖實錄』) indicating that a significant amount of military supplies, including firearms, were stored on Ganghwado in December of the 5th year of Shinchung(1781). The decision to store these materials in Ganghwado Island may have been due to the perception of the Joseon decision-makers, who strategically valued Ganghwado Island, and the relocation of 'Tongaoyeong'(統禦營) and the integration with 'Jinmuyeong'(鎭撫營). After acquisition, it is presumed that the firearm was operated at locations like 'Jinmuyeong'(鎭撫營). The firearm's production is presumed to have been associated associated with institutions such as 'Gungisi'(軍器寺). In conclusion, the 'Shinchungmyeong Jochong' exemplifies a typical firearm of the Joseon Dynasty, and it is likely that it was stored on Ganghwado in December of 1781. Its production is believed to have been related to institutions such as 'Gungisi'. Following its acquisition, it is presumed that the firearm was operated at locations including 'Jinmuyeong'.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

A Study on Water Demand Forecasting Methods Applicable to Developing Country (개발도상국에 적용 가능한 물수요 예측 방법 연구)

  • Sung-Uk Kim;Kye-Won Jun;Wan-Seop Pi;Jong-Ho Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.75-84
    • /
    • 2023
  • Many developing countries face challenges in estimating long-term discharge due to the lack of hydrological data for water supply planning, making it difficult to establish a rational water supply plan for decision-making on water distribution. The study area, the Bandung region in Indonesia, is experiencing rapid urbanization and population concentration, leading to a severe shortage of freshwater. The absence of water reservoir prediction methods has resulted in a water supply rate of approximately 20%. In this study, we aimed to propose an approach for predicting water reservoirs in developing countries by analyzing water safety and potential water supply using the MODSIM (Modified SIMYLD) network model. To assess the suitability of the MODSIM model, we applied the unit hydrograph method to calculate long-term discharge based on 19 years of discharge data (2002-2020) from the Pataruman observation station. The analysis confirmed alignment with the existing monthly optimal operation curve. The analysis of power plant capacity revealed a difference of approximately 0.30% to 0.50%, and the water intake safety at the Pataruman point showed 1.64% for Q95% flow and 0.47% for Q355 flow higher. Operational efficiency, compared to the existing reservoir optimal operation curve, was measured at around 1%, confirming the potential of using the MODSIM network model for water supply evaluation and the need for water supply facilities.

Development of a Listener Position Adaptive Real-Time Sound Reproduction System (청취자 위치 적응 실시간 사운드 재생 시스템의 개발)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.458-467
    • /
    • 2010
  • In this paper, a new audio reproduction system was developed in which the cross-talk signals would be reasonably cancelled at an arbitrary listener position. To adaptively remove the cross-talk signals according to the listener's position, a method of tracking the listener position was employed. This was achieved using the two microphones, where the listener direction was estimated using the time-delay between the two signals from the two microphones, respectively. Moreover, room reverberation effects were taken into consideration where linear prediction analysis was involved. To remove the cross-talk signals at the left-and right-ears, the paths between the sources and the ears were represented using the KEMAR head-related transfer functions (HRTFs) which were measured from the artificial dummy head. To evaluate the usefulness of the proposed listener tracking system, the performance of cross-talk cancellation was evaluated at the estimated listener positions. The performance was evaluated in terms of the channel separation ration (CSR), a -10 dB of CSR was experimentally achieved although the listener positions were more or less deviated. A real-time system was implemented using a floating-point digital signal processor (DSP). It was confirmed that the average errors of the listener direction was 5 degree and the subjects indicated that 80 % of the stimuli was perceived as the correct directions.

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

In Vitro imaging of MRI and Ultrasound for Colorectal Carcinoma (직결장암 조직의 자기공명영상과 초음파 소견에 대한 비교 연구)

  • Lee, Hwang Kyu;Jee, Keum Nahn;Hong, Sujin;Koh, Jae Hyang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2013
  • Purpose : To evaluate and compare the accuracy of magnetic resonance imaging (MRI) and ultrasound (US) for detection and estimation of invasion depth of colorectal carcinoma (CRC) by correlation with histopathologic findings in vitro, and to find out the best MR pulse sequence for accurate delineation of tumor from surrounding normal tissue. Materials and Methods: Resected specimens of CRC from 45 patients were examined about tumor detectability and invasion depth of US using high frequency (5-17 MHz) linear transducer in a tube filled with normal saline and MRI in a 8-channel quadrate head coil. The institutional review board approved this study and informed consent was waived. MRI with seven pulse sequences of in- and out-of-phases gradient echo T1 weighted images, fast spin echo T2 weighted image and its fat suppression image, fast imaging employing steady-state acquisition (FIESTA) and its fat suppression image, and diffusion weighted image (DWI) were performed. In each case, both imaging findings of MRI and US were evaluated independently for detection and estimation of invasion depth of tumor by consensus of two radiologists and were compared about diagnostic accuracy according to the histopathologic findings as reference standard. Seven MR pulse sequences were evaluated on the point of accurate delineation of tumor from surrounding normal tissue in each specimen. Results: In specimens of CRC, both imaging modalities of MRI (91.1%) and US (86.7%) showed relatively high diagnostic accuracy to detect tumor and evaluate invasion depth of tumor. In early CRC, diagnostic accuracy of US was 87.5% and that of MRI was 75.0%. There was no statistically significant difference between two imaging modalities (p > 0.05). The best pulse sequence among seven MR sequences for accurate delineation of tumor from surrounding normal tissue in each specimen of CRC was fast spin echo T2 weighted image. Conclusion: MRI and US show relatively high diagnostic accuracy to detect tumor and evaluate invasion depth of resected specimen of CRC. The most excellent pulse sequence of MRI for accurate delineation of tumor from surrounding normal tissue in CRC is fast spin echo T2 weighted image.