• 제목/요약/키워드: pneumatic actuators

검색결과 58건 처리시간 0.021초

MR Brake를 이용한 공압근육매니퓰레이터의 지능제어 (Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake)

  • 안경관;;안영공
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF

퍼지제어기를 이용한 보행재활로봇의 공압식 조작기 개발 (Development of the Pneumatic Manipulator of Gait Rehabilitation Robot using Fuzzy Control)

  • 김승호;정승호;류두현;조강희;김봉옥
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.169-175
    • /
    • 2000
  • Stable and comfortable walking supports, which can reduce the body weight load partially, are needed for the recovering patients from neurologic disease and orthopedic procedures. In this paper, the development of a manipulator of rehabilitation robot for the patients with walking disabilities are studied. A force controller using pneumatic actuators is designed and implemented to the human friendly rehabilitation robot considering the safety of patients, reliability of the system, effectiveness of the unloading control and economic maintenance of the system. The mechanism of the unloading manipulator is devised to improve the sensibility for the movement of the patients such as direction and velocity. For the unloading force control, fuzzy control algorithm is adopted to reduce the partial body weight and suppress the unwanted fluctuation of the body weight load to the weak legs due to the unnatural working of the patients with walking disabilities. The effectiveness of the force control is experimentally demonstrated.

  • PDF

테이프 피더 내장 공압 액추에이터에 대한 신뢰성 평가에 관한 연구 (A Study on the Reliability Analysis for the High Precision Pneumatic Actuator within Tape Feeder)

  • 최진화;전병철;조명우;강성민;이수진
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.63-68
    • /
    • 2006
  • This research presents the reliability analysis of the pneumatic actuator within the tape feeder that is used to transfer the correct force to linked parts during l.0E+7 cycles. First, the degradation analysis for thrust and air leakage is executed to obtain the failure data of a product based on its performance over time. Second, once the parameters has been calculated using the weibull 2-parameter distribution and MLE(Maximum Likelihood Estimation), information related to life such as reliability, failure rate, probability density function is estimated. Finally, MTTF(Mean Time To Failure) and $B_{10}$ life of actuators are calculated. MTTF means the mean life at the confidence level and $B_{10}$ life refers to the time by which 10% of the product would fail. In this study, failure causes and solutions are examined using the reliability analysis.

유연한 공압인공근육로봇의 강건제어 (Robust control of a flexible manipulator with artificial pneumatic muscle actuators)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF

6자유도 조작장치의 설계와 기구학적 특성에 관한 연구 (A study on the design and characteristics of kinematics of 6 degree-of-freedom manipulators)

  • 김정태;김문생
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.467-475
    • /
    • 1998
  • The Six Degree-of-Freedom manipulators are generally operated by linear actuators which are hydraulic cylinder, pneumatic cylinder, ball-screw. But these actuators are not adequate to have a wide work-space, and furthermore some of them have a self-locking property. Therfore, we have designed a new manipulator which fully overcomes these demerits. The new manipulating system consists of 6 DC-motors to generate operation forces and 6 position transducers to feedback displacement signals. This paper presents an overview of the design and characteristics of 6 Degree-of-Freedom force feedback manipulators for vitual reality implementation. we can operate Six Degree-of-Freedom manipulator with six motors and six potentiometers.

2축 선형 엑츄에이터의 전류 PI제어기 설계 (Design of Current PI Controller for 2-Axis Linear Actuator)

  • 전찬용;김재한;목형수;최규하;이정민;김상훈;김태훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2007
  • The actuators of anti-vibration system(AVS) can be separated into several types: piezoelectric actuators, pneumatic springs, cylinders, rotating motor and linear motor. The last one has some advantages, such as low noise, low vibration, simpler configuration and possibility of direct drive. The voice coil motor(VCM) is one type of linear motor, originally used in speaker system. VCM actuators are usually used in occasions that rapid and controlled motion of devices are required. In this paper, a controller which satisfies system specification(e.g. current controller bandwidth) within whole operation range is designed. For that objective, parameters as position were initially obtained with 3D FEM analysis and motor modeling was performed. A current controller in 2-axis VCM drive system was designed and then performance of the proposed controller was verified with simulation using Simplorer and an experimental result.

  • PDF

Modeling and designing a power assist circuit using artificial muscle

  • Kagawa, Toshiharu;Fujita, Toshinori;Kawashima, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.121-126
    • /
    • 1993
  • Artificial muscle actuators are used in various fields. Especially, they are applied to the power assist circuit to make use of their characteristics. The purpose of this paper is to and analyze the power assist circuit using an artificial muscle actuator. As a result, it is found that the operating feeling of the power assist circuit depends mainly on the flow gain of the pneumatic servo valve. The required flow gain is calculated from the proposed model, and the experimental results agreed with the calculated results.

  • PDF

공압운동기기의 하지 슬관절 운동 시 재활운동 효과의 유효성에 관한 연구 (Validation of Exercise Effect in Rehabilitation during Knee Extension of the Lower Limbs using Pneumatic Exercise System)

  • 이호준;강승록;김경;정구영;유미;김정자;권대규
    • 재활복지공학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2011
  • 본 연구에서는 공압 액추에이터를 이용하여 보다 안전하고 편리하게 사용자가 원하는 맞춤형 운동 프로그램을 선택할 수 있는 공압용 슬관절 운동시스템을 개발하였고, 재활운동 시 운동효과에 대한 유효성을 검증하고자 한다. 피험자는 평소 운동을 주 1회 이하로 실시하며 슬관절 신전과 굴곡에 이상이 없는 대학생 수준의 20대 남녀 10명을 대상으로 실시하였다. 실험방법은 기존의 유압식 슬관절 운동장비와 개발된 운동시스템을 이용하여 하루 12회씩 3세트의 슬관절 신전 및 굴곡운동을 실시하고, 주 3회 실시하며 실험은 총 4주간 반복되었다. 운동부하 프로그램은 유압식의 수동형 운동부하와 본 연구에서 개발된 시스템의 능동형 운동부하로 나누어 제공하였다. 운동부하 프로그램에 따른 실시간 근육활성 패턴과 운동 전 후 근육활성도를 비교함으로써 재활운동에 대한 운동효과를 검증하였다. 실험결과 수동형 운동부하보다 능동형 운동부하에 보다 높은 근육활성도를 이끌어 냈으며 운동 4주 후 더 큰 근력증진 효과를 나타냈다. 장비 중심의 운동부하 보다 사용자 중심의 운동부하가 더 효과적으로 근력을 증진할 수 있음을 알 수 있었다. 향후 재활환자나 노약자들에게 안전하고 효율적인 재활운동프로그램으로 활용 될 것이며 또한 재활장비에 적용되어 재활치료관련 종사자들에게 보다 쉽고 편리한 재활운동처방이 가능할 것이라 사료된다.

소형 무인 비행체 조종면 작동용 압전 복합재료 작동기 연구 (Piezo-Composite Actuator for Control Surface of a Small Unmanned Air Vehicle)

  • 윤범수;박기훈;윤광준
    • Composites Research
    • /
    • 제27권2호
    • /
    • pp.47-51
    • /
    • 2014
  • 본 논문은 기존의 유/공압 및 전기식 모터를 대체할 수 있는 경량, 고성능 지능소자 구동기를 설계/제작하고 이를 소형 무인비행체의 조종익 시스템에 적용 가능성을 연구한 것이다. 또한 압전 복합재료 작동기에 대한 성능평가를 수행하였으며, 유니모프 및 바이모프 형태의 작동기를 제작하여 각각의 작동 특성을 확인하였다. 이와 같은 성능시험 평과 결과를 통해 바이모프 형태의 작동기가 하중 유무와 무관하게 선형적인 받음각 변화를 가짐을 알 수 있었다. 이러한 지능소자 구동 시스템은 소형 로봇, 유도무기 및 MAV, UAV의 조종익 제어 시스템으로 사용될 수 있는 가능성을 확인하였다.