• Title/Summary/Keyword: plywood shear strength

Search Result 57, Processing Time 0.019 seconds

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

Development and Application of Okara-based Adhesives for Plywood Panels (두부비지를 이용한 합판용 접착제의 개발 및 적용)

  • Oh, Sei-Chang;Ahn, Sye-Hee;Choi, In-Gyu;Jeong, Han-Seob;Yoon, Young-Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.30-38
    • /
    • 2008
  • Petroleum-based resin adhesives have extensively been used for the production of wood panels. However, with the increase of manufacturing cost and the environmental issue, such as the emission of volatile organic compounds, of the adhesive resins, it is necessary to be developed new adhesive systems. In this study, the potential of okara, which is a residue wasted from the production of tofu, for the development of bio-based adhesives was investigated. At first, the physical and chemical properties of okara were examined. After okara was hydrolyzed in acidic and/or alkaline solutions, okara-based adhesive resins were formulated with the mixtures of the okara hydrolyzates and phenol formaldehyde (PF) prepolymer. The adhesive resins were used for the fabrication of plywood panels, and then the adhesive strength and formaldehyde emission of the plywood panels were measured to examine the applicability of the resin adhesives for the production of plywood panels. The solids content and pH of the okara used in this study were around 20% and weak acidic state, respectively. In the analysis of its chemical composition, the content of carbohydrate was the highest, and followed by protein. The shear strengths of plywood fabricated with okara-based resin adhesives exceeded a minimum requirement of KS standard for ordinary plywood, but its wood failure did not reach the minimum requirement. In addition, the formaldehyde emissions of all plywood panels were higher than that of E1 specified in the KS standard. Based on these results, okara has the potential to be used as a raw material of environmentally friendly adhesive resin systems for the production of wood panels, but further researches - biological hydrolysis of okara and various formulations of PF prepolymer - are required to improve the adhesive strength and formaldehyde emission of okara-based resin adhesives.

Characteristics of Fancy Veneer Plywood Floor using Green Tea Leaves Powder (녹차잎분말을 사용한 마루판의 특성)

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.4
    • /
    • pp.284-292
    • /
    • 2010
  • This research was carried out to examine the properties of fancy cherry veneer overlaid on the PF resin bonded Meranti plywood floor, which 2.5% green tea leaf powder was applied in the UV varnishes and the adhesives for scavenging the volatile organic compounds. The results were as follows: 1. The various properties of the treated samples, such as density, moisture content, thickness swelling, bending strength(MOR), adhesion shear strength, surface abrasion, curling, cyclic delamination test with boiling water, boiling property, cold-resistance and heat resistance, acid resistance and alkali resistance, and anti-contamination property showed no significant difference between the properties of the control samples. 2.5% green tea leaf powder treated floor gave a little better results than the control for surface scratch test. 2. In case of QUV and weathering test, no difference between the treated sample and control was found. 3. The floor was discolored by adding 10% green tea leaf powder to UV coating, and the floor was also discolored to light green during by the soaking test. The color of floor was not changed up to 5% addition level.

  • PDF

Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films (열가소성수지 필름의 적층방법에 따른 합판의 접착성능)

  • Kang, Eunchang;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.559-571
    • /
    • 2017
  • This study was conducted to determine the adhesive performances of plywoods affected by layering direction and the amounts of thermoplastic films. The face and back layers of veneer were hardwood species (Mixed light hardwood) and core layer veneer was radiata pine (Pinus radiata D. Don). Thermoplastic film used as adhesive were polypropylene (PP) film and polyethylene (PE) film. Thermal analysis and tensile strength were investigated on each films. As a result, the melting temperature of PP and PE films were $163.4^{\circ}C$ and $109.7^{\circ}C$, respectively, and the crystallization temperature were $98.9^{\circ}C$ and $93.6^{\circ}C$, respectively. Tensile strength and elongation of each films appeared higher on the width direction than length direction. Considering the characteristics of the thermoplastic films, the test for the amount of film used was carried out by layering film to the target thickness on veneer. The effecting of layering direction of film on plywood manufacturing was conducted by laminating in the length and width directions of the film according to the grain direction of veneer. Tensile-shear strength of plywood in wet condition was satisfied with the quality standard (0.7 MPa) of KS F 3101 when the film was used over 0.05 mm of PP film and over 0.10 mm of PE film. Tensile-shear strength of plywood after cyclic boiling exceeded the KS standard when PP film was used 0.20 mm thickness. Furthermore, higher bonding strength was observed on a plywood made with width direction of film according to grain direction of veneer than that of length direction of film. Based on microscopic analysis of the surface and bonding line of plywood, interlocking between veneers by penetration of a thermoplastic film into inner and cracks were observed.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.

Studies on Adhesion of Fancy Veneer and Formaldehyde Emission of Wood-Based Floorings by Mole Ratios of Urea and Melamine (요소·멜라민 접착제의 수지 조성에 따른 마루판의 천연무늬단판 접착성 및 포름알데히드 방출에 대한 연구)

  • Kang, Eun-Chang;Park, Jong-Young;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • This study was to investigate the adhesion properties of fancy veneer and base panels and formaldehyde emission of wood-based floorings bonded with urea-melamine formaldehyde adhesives. We focused on stoichiometric mole ratio of reactive functional groups. The urea-melamine formaldehyde adhesives were made at twelve different formaldehyde/urea-melamine mole ratios. The interlaminated shear strength and formaldehyde emission of wood-based floorings bonded with selected adhesive among these adhesives were examined. The results showed that the bonding properties were high and the formaldehyde emission was low as the adhesive consisted of stoichiometric mole ratio of formaldehyde/urea-melamine. Interlaminated shear strengths of HDF(High Density Fiberboard) flooring were over 14 kgf/cm2 at all mole ratios. At the mole ratio of 1.0, HDF flooring showed low value of formaldehyde emission of 953 mg/L. Interlaminated shear strengths of Plywood flooring were high, 14.02 kgf/cm2 at mole ratio of 1.4. At the mole ratio of 1.0, Plywood flooring showed low value of formaldehyde emission of 0.26 mg/L.

Characterization of Plasma Proteins from Bloods of Slaughtered Cow and Pig and Utilization of the Proteins as Adhesives (도축혈액 혈장 단백질의 특성 및 접착제로의 응용)

  • Park, Eun-Hee;Lee, Hwa-Hyoung;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • Simple and rapid method of purification of plasma proteins from bloods of slaughtered animals was developed and the proteins were applied to plywood products as a blood 히ue to utilize waste materials. Plasma protein was obtained by adding 2% trichloroacetic acid (TCA) or 0.6 N HCI as optimal concentration to the supernatant, after centrifugation of bloods. Molecular properties of beef and pig plasma proteins were examined on SDS-PAGE. Application of blood glue to plywood was quite satisfactory compared to the synthetic amino resin by tensile-shear test for the strength of adhesive bonding.

  • PDF

Effect of Polyester Polyol and NCO Index to the Physical Properties of Polyurethane Adhesives in Cryogenic and Room Temperature (폴리올의 구조와 NCO Index에 따른 폴리우레탄 접착제의 상온과 초저온에서의 물성 변화)

  • Kim, Sang-Bum;Cho, Il-Sung;Kang, Sung-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.38-42
    • /
    • 2008
  • Effect of polyol structure and NCO index on adhesion of PU adhesive at room ($25^{\circ}C$) and extremely low temperature ($-190^{\circ}C$) was investigated. At room temperature adhesive strength of PU adhesive tends to decrease as molecular weight of polyol increases, however, the strength at $-190^{\circ}C$ shows opposite tendency. Adhesive strength of the PU turned out to be directly proportional to the amount of MDI. PU containing aliphatic polyol was higher in shear strength at $-190^{\circ}C$ and the strength of PU with aromatic polyol was higher at room temperature.

  • PDF

A Study on the Taro Extension of UF and PF Resin Bonding Plywoods (요소(尿素) 및 석탄산수지(石炭酸樹脂) 합판(合板)의 토란증량(土卵增量)에 관(關)한 연구(硏究))

  • Lee, Phil Woo;Bae, Young Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.32-38
    • /
    • 1982
  • This study was carried out to examine the possibility to replace imported wheat flour with taro. Taro and wheat flour were used for the extenders after oven drying($100{\pm}3^{\circ}C$)and pulverized into 80-100mesh minute powder by laboratory willey mill. Urea- and phenol-formaldehyde resin adhesives were used for plywood manufacture, and the extending materials mixed with the extension at the ratio of 10, 20, 30, and 50% to each resin solution. The results obtained at this study were summarized as follows; 1) In dry and wet shear strength of urea-formaldehyde resin adhesive, taro showed very excellent bonding strength compared with wheat flour in all extending ratio. Therefore taro showed the possibility that be usable to taro in place of wheat flour. 2) In dry and wet shear strength of phenol-formaldehyde resin adhesive, in general, wheat flour showed higher bonding strength than taro. But in dry shear strength, taro showed higher shear strength than wheat flour in 30 and 50% extension.

  • PDF