• Title/Summary/Keyword: pluripotent gene

Search Result 54, Processing Time 0.025 seconds

Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy (Scanning Electrochemical Microscopy를 이용한 한우 체내 수정란의 호흡률 조사)

  • Kim, Hyun;Bok, Nan-Hee;Kim, Sung-Woo;Do, Yoon-Jung;Kim, Min-Kyu;Cho, Sang-Rae;Seong, Hwan-Hoo;Kim, Dong Hun;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • Oxygen consumption is a useful parameter for evaluating mammalian embryo quality, since individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we measured to investigate the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of pluripotent gene and anti-oxidant enzyme was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). Oxygen consumption of blastocyst was measured using a SECM and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts ($10.2{\times}10^{15}/mols^{-1}$ versus $6.4{\times}10^{15}/mols^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7 and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\sim}10^{15}/mols^{-1}$, respectively. Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\times}10^{15}/mols^{-1}$, respectively. GPX1 and SOD1 were significantly increased in over -10.0 group than below 10.0 groups but in catalase gene, there was no significant difference. On the other hand, In OCT-4 and Sox2, pluripotent gene, there was a significant difference (p<0.05) between the below-10.0 ($0.98{\pm}0.1$) and over 10.0 ($1.79{\pm}0.2$). In conclusion, these results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.

Determining Osteogenic Differentiation Efficacy of Pluripotent Stem Cells by Telomerase Activity

  • Zhang, Siqi;Sun, Yuhua;Sui, Yi;Li, Yan;Luo, Zuyuan;Xu, Xiao;Zhou, Ping;Wei, Shicheng
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.751-760
    • /
    • 2018
  • BACKGROUND: Bone tissue engineering based on pluripotent stem cells (PSCs) is a new approach to deal with bone defects. Protocols have been developed to generate osteoblasts from PSCs. However, the low efficiency of this process is still an important issue that needs to be resolved. Many studies have aimed to improve efficiency, but developing accurate methods to determine efficacy is also critical. Studies using pluripotency to estimate efficacy are rare. Telomerase is highly associated with pluripotency. METHODS: We have described a quantitative method to measure telomerase activity, telomeric repeat elongation assay based on quartz crystal microbalance (QCM). To investigate whether this method could be used to determine the efficiency of in vitro osteogenic differentiation based on pluripotency, we measured the pluripotency pattern of cultures through stemness gene expression, proliferation ability and telomerase activity, measured by QCM. RESULTS: We showed that the pluripotency pattern determined by QCM was similar to the patterns of proliferation ability and gene expression, which showed a slight upregulation at the late stages, within the context of the general downregulation tendency during differentiation. Additionally, a comprehensive gene expression pattern covering nearly every stage of differentiation was identified. CONCLUSION: Therefore, this assay may be powerful tools for determining the efficiency of differentiation systems based on pluripotency. In this study, we not only introduce a new method for determining efficiency based on pluripotency, but also provide more information about the characteristics of osteogenic differentiation which help facilitate future development of more efficient protocols.

Insights into the signal transduction pathways of mouse lung type II cells revealed by transcription factor profiling in the transcriptome

  • Ramana, Chilakamarti V.
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.8.1-8.10
    • /
    • 2019
  • Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they play an important role in many cellular processes including trans-differentiation into type I cells as well as repair of lung injury in response to toxic chemicals and respiratory pathogens. Transcription factors are the regulatory proteins dynamically modulating DNA structure and gene expression. Transcription factor profiling in microarray datasets revealed that several members of AP1, ATF, $NF-{\kappa}B$, and C/EBP families involved in diverse responses were expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem cells as well as in mouse lung development. Identification of the transcription factor profile in mouse lung type II cells will serve as a useful resource and facilitate the integrated analysis of signal transduction pathways and specific gene targets in a variety of physiological conditions.

Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm

  • Ching-Fu Tu;Shu-Hui Peng;Chin-kai Chuang;Chi-Hong Wong;Tien-Shuh Yang
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.339-349
    • /
    • 2023
  • Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.

Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun;Shin, Mi-Jung;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum

  • Narae Park;Yeri Alice Rim;Hyerin Jung;Yoojun Nam;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Background and Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples. Methods and Results: We differentiated CMs from HC- and SLE-iPSCs using 2D culture platforms. SLE-CMs showed decreased proliferation and increased levels of fibrosis and hypertrophy marker expression; however, HC-and SLE-monolayer CMs reacted differently to SLE serum treatment. HC-iPSCs were also differentiated into CMs using 3D spheroid culture and anti-Ro autoantibody was treated along with SLE serum. 3D-HC-CMs generated more mature CMs compared to the CMs generated using 2D culture. The treatment of anti-Ro autoantibody rapidly increased the gene expression of fibrosis, hypertrophy, and apoptosis markers, and altered the calcium signaling in the CMs. Conclusions: iPSC derived cardiomyocytes with patient-derived serum, and anti-Ro antibody treatment could serve in effective autoimmune disease modeling including SLE. We believe that the present study might briefly provide possibilities on the application of a combination of patient-derived materials and iPSCs in disease modeling of autoimmune diseases.

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung;Lee, Hyun-Shik;Moody, Sally A.
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.705-712
    • /
    • 2014
  • The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

Methylation Changes at the First Exon of Bovine oct-4 Gene in Embryos Produced Either by In Vitro Fertilization or Somatic Cell Nuclear Transfer

  • Seungeun Yeo;Park, Jung-Sun;Wee, Kap-In;Lee, Hyo-Sang;Koo, Deog-Bon;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.62-62
    • /
    • 2002
  • The relationship of Oct-4 to pluripotent cells is suggested by its tightly restricted expression pattern during embryonic development. Just prior to implantation it is limited to pluripotent cells of the inner cell mass (ICM) that will form the embryo proper but is not expressed in the trophectoderm, the structure that will form the extraembryonic tissues. (omitted)

  • PDF