• Title/Summary/Keyword: platinum(Pt)

Search Result 487, Processing Time 0.026 seconds

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

The Effects of Sulfur on the Catalytic Reaction between Carbon Monoxide and Nitric Oxide on Polycrystalline Platinum Surface (다결정 백금표면에서의 일산화탄소와 일산화질소의 촉매반응에 미치는 황의 영향)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.215-223
    • /
    • 1990
  • The effects of sulfur on the catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, have been studied using thermal desorption spectrometry(TDS) under ultra-high vacuum(UHV) conditions. Sulfur weakened both the adsorptions of CO and NO by direct site blocking and indirect electronic effect. S(a) desorbing below 800 K gave little effect on reaction activity whereas S(a) desorbing above 800 K, which adsorbs as an atomic state, gave much effect on it. The adsorbed sulfur existed on the surface of platinum in the form of islands, and also reduced the adsorption energies of adsorbates by the long-ranged electronic effect. The platinum catalyst in the reaction between CO and NO was poisoned selectively by S(a), poisoning firstly the active sites of this reaction.

  • PDF

Amine and Olefin Complexes of Pt(II) Having a PCP-Pincer Ligand

  • Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.132-136
    • /
    • 2002
  • $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)\;(OTf=CF_3SO_3^-)$ readily reacts with various amines to afford cationic amine complexes $[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(amine)](OTf)\;(amine=NH_3,\;NHMe_2,\;NHC_4H_8,\;NH_2Ph,\;NH_2(Tol-p))$ in high yields. These complexes have been fully characterized by IR, $^1H-,\;^{19}F{^1H}-,\;and\;^{31}P{^1H}-NMR$ spectroscopy, and elemental analyses. Reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with acrylonitrile quantitatively produced the ${\pi}$-olefinic complex $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)](OTf)$ which is only stable in solution in the presence of acrylonitrile. Attempt at isolating this complex in the pure solid state was failed due to partial decomposition into $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ The equilibrium constants $(K_{eq}=[Pt(PCP)-(NH_2R)^+][CH_2=CHCN]/[Pt(PCP)(CH_2=CHCN)^+][NH_2R]:\;[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)]^++NH_2R{\rightleftarrows}[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(NH_2R)]^++CH_2=CHCN=Ph,\;p-tolyl)$ were calculated to be 0.28 (for R = Ph) and 3.1 (R = p-tolyl) at $21^{\circ}C$. The relative stability of the ${\sigma}$-donor amine versus the ${\pi}$-olefinic acrylonitrile complex has been found largely dependent upon the amine-basicity $(pK_b)$, implicating that acrylonitrile practically competes with amine in the platinum coordination sphere. On the contrary to the formation of the acrylonitrile complex, no reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with other olefins such as ethylene, styrene and methyl acrylate was observed.

The Effect Of Additive $N_2$ Gas In Pt Film Etching Using Inductively Coupled $Cl_2/Ar$ Plasmas ($Cl_2/Ar$ 유도 결합 플라즈마에서 Pt 박막 식각시 $N_2$ 가스 첨가 효과)

  • Ryu, Jae-Heung;Kim, Nam-Hoon;Chang, Eui-Goo;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.1-6
    • /
    • 2000
  • In this study, the effects of the addition of $N_2$ gas into the $Cl_2$ (90)/Ar(10) gas mixture, which has been proposed as the optimized etching gas combination, for etching of platinum was performed. The selectivity of platinum film to $SiO_2$ film etch mask increased with the addition of $N_2$ gas, and etch profile over 75 $^{\circ}$ could be obtained when 20 % additive $N_2$ gas was added. These phenomena were interpreted as the results of a formation of blocking layer such as Si-N or Si-O-N on the $SiO_2$ mask. The maximum etch rate of Pt film and selectivity of Pt to $SiO_2$ are 1425 ${\AA}$/min and 1.71, respectively. These improvements were considered to be due to the formation of more volatile compounds such as Pt-N or Pt-N-Cl.

  • PDF

Room Temperature Hydrogen Gas Sensor Based on Carbon Nanotube Yarn (상온감지 가능한 탄소나노튜브 방적사 기반의 수소 감지 센서)

  • Kim, Jae Keon;Lee, Junyeop;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • We report the development of a room-temperature hydrogen ($H_2$) gas sensor based on carbon nanotubes (CNT) yarn. To detect $H_2$ gas in room temperature, a highly ordered CNT yarn was placed on a substrate from a spin-capable CNT forest, followed by the deposition of a platinum (Pt) layer on surface of the CNT yarn. To examine the effect of the Pt-layer on the response of the CNT sensor, a comparative sensing performance was characterized on both the Pt deposited and non-deposited CNT yarn at room temperature. The Pt-CNT yarn yielded high response, whereas the non-deposited CNT yarn showed negligible response for $H_2$ detection at room temperature. Pt is a reliable and efficient catalyst that can substantially improve the detection of $H_2$ gas by chemical sensitization via a "spillover" effect. It can be efficiently utilized to increase the sensitivity and selectivity as well as to obtain fast response and recovery times.

Disposable Solid-State pH Sensor Using Nanoporous Platinum and Copolyelectrolytic Junction

  • Noh, Jong-Min;Park, Se-Jin;Kim, Hee-Chan;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3128-3132
    • /
    • 2010
  • A disposable solid-state pH sensor was realized by utilizing two nanoporous Pt (npPt) electrodes and a copolyelectrolytic junction. One nanoporous Pt electrode was to measure the pH as an indicating electrode (pH-IE) and the other assembled with copolyelectrolytic junction was to maintain constant open circuit potential ($E_{oc}$) as a solid-state reference electrode (SSRE). The copolyelectrolytic junction was composed of cationic and anionic polymers immobilized by photo-polymerization of N,N'-methylenebisacrylamide, making buffered electrolytic environment on the SSRE. It was expected to make. The nanoporous Pt surrounded by a constant pH excellently worked as a solid state reference electrode so as to stabilize the system within 30 s and retain the electrochemical environment regardless of unknown sample solutions. Combination between the SSRE and the pH-IE commonly based on nanoporous Pt yielded a complete solid-state pH sensor that requires no internal filling solution. The solid state pH sensing chip is simple and easy to fabricate so that it could be practically used for disposable purposes. Moreover, the solid-state pH sensor successfully functions in calibration-free mode in a variety of buffers and surfactant samples.

Platinum(II) Complexes Containing Glycine and Styrene (글리신 및 스티렌의 백금(Ⅱ) 착물)

  • Jun Moo Jin;Peter P. Fu
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.161-170
    • /
    • 1977
  • Several Pt(II) complexes containing glycine (or glycino anion) and styrene have been prepared, and their structures have been confirmed by infrared spectroscopy. The results confirm the structure of chloro(glycino)(styrene)platinum(II) in which the nitrogen atom of the chelated glycino anion is coordinated to the platinum in the trans position to styrene (N-trans isomer).

  • PDF

Selective Cytotoxicity Platinum (II) Complex Containing Carrier Ligand of cis-1,2-Diaminocyclohexane (Cis-Diaminocyclohexan을 배위자로 하는 배금(II)착체의 선택적 세포독성)

  • 노영수;정세영;정지창
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.87-94
    • /
    • 1998
  • The use of cisplatin is limited by severe side effects such as renal toxicity. Our platinum-base drug discovery is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (II) complex analogue [Pt (cis-DACH)(DPPP)]. 2NO$_3$ (PC) containing cis-1,2-diaminocyclohexane as a carrier ligand and 1,3-bis(diphenylphosphino) propane as a leaving group. Furthermore, nitrate was added to improved the solubility. In this study, its structure was determined and its antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma, and in vitro cytotoxicity was determined against primary cultured rabbit kidney proximal tubular and renal cortical cells of human kidney using colorimetric MTT assay. PC demonstrated acceptable antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma and significant activity as compared with that of cisplatin. The toxicity of PC was found quite less than that of cisplatin using MTT and $^3$H-thymidine uptake tests in rabbit proximal tubular cells and human kidney cortical cells. PC was used for human cortical tissue in 7 weeks hitoculture by the glucose-consumption tests. We determined that the new platinum drug has lower nephrotoxicity than cisplatin. Based on these results, this novel platinum (II) complex compound (PC) represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low nephrotoxicity.

  • PDF

MO Interpretation for Anticancer Activity of Pt-complexes (백금착물 (II) 의 항암성에 관한 분자궤도론적 해석 (제1보))

  • Byung-Kak Park;Yeo Hwhan-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.348-355
    • /
    • 1985
  • Extended Huckel Calculation of cis-and trans-dichloro diammine platinum(II), dichloroethylene diamine platinum(II) and their N-mono, di, tri and tetra-methylated or ethylated ones were carried out to investigate their anticancer activity. It was found that the net charge of two chlorine atoms in cis-isomers are greater than those in trans-ones and Pt-Cl bond energies of the former are less than that of the latter, indicating that Pt-Cl bond in cis-isomers has greater ionic character than that in trans-ones and Cl atoms in the former are easier to dissociated as Cl- than those in the latter. Also, the values of $b_{2g}-b_{1g}$ energy difference, ${\Delta}_1$ were found to be greater in cis-isomers than in trans-one without exceptions. For the substitution of methyl for H atom in ammine and ethylenediamine Pt-Cl bond strength shows the tendency to increase with increasing in number of methyl group. Accordingly, We believe that two Cl atoms in $PtLCl_2$-complexes (L: NH$_3$, en) are dissociated in the first step of the action of anticancer.

  • PDF

A Study of Pt-Mg/Mesoporous Aluminosilicate Catalysts for Synthesis of Jet-fuel from n-Octadecane (n-Octadecane 으로부터 항공유 제조를 위한 Pt-Mg/mesoporous aluminosilicate 촉매 연구)

  • Jung, Euna;Kim, Chul-Ung;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.712-718
    • /
    • 2016
  • Platinum catalysts supported on the mesoporous material synthesized from Y zeolite were applied to synthesis of jet-fuel through n-octadecane hydroupgrading. The mesoporous aluminosolicate, $MMZ_{HY}$ was synthesized using Y zeolite as its framework source. The effect of the addition of Mg to $Pt/MMZ_{HY}$ catalyst for n-octadecane hydroupgrading was investigated. Catalyst characterization was performed with X-ray diffraction, $N_2$ adsorption, temperature-programmed reduction in hydrogen flow, temperature-programmed desorption of ammonia, and infrared spectroscopy of adsorbed pyridine. The high yield of jet-fuel over the $PtMg(2.0)/MMZ_{HY}$ can be attributed not only to the higher dispersion of Pt metal and higher reducibility, but also the higher amount of acid sites and higher strength of acid sites. The selectivity to iso-paraffin in the jet-fuel fraction could be reached above 80% over the optimized $PtMg/MMZ_{HY}$ catalyst.