• Title/Summary/Keyword: plating process

Search Result 480, Processing Time 0.025 seconds

Bioremediation of metal contamination groundwater by engineered yeasts expressing phytochelatin synthase (Phytochelatin synthase 발현을 통한 효모의 중금속 처리에 관한 연구)

  • ;;;Wilfred Chen
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.290-292
    • /
    • 2004
  • Heavy metal contamination has been increased in aqueous environments near many industrial facilities, such as metal plating facilities, mining operations, and tanneries. The soils in the vicinity of many military bases are also reported to be contaminated and pose a risk of groundwater and surface water contamination with heavy metals. The biological removal of metals through bioaccumulation has distinct advantages over conventional methods; the process rarely produces undesirable or deleterious chemical byproducts, it is highly efficient, easy to operate and cost-effective in the treatment of large volumes of wastewater containing toxic heavy metals. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment. In this study, characteristics of the cell growth and heavy metal accumulation by Saccharomyces cerevisiae strains expressing phytochelatin syntahse (PCS) gene were studied in batch cultures. The AtCRFI gene was demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells tolerated more Cd$^{2+}$ than controls.

  • PDF

Formation Mechanism and Corrosion-Resistance of Magnesium Film by Physical Vapour Deposition Process (물리증착법에 의해 제작한 마그네슘 박막의 형성기구와 내식특성)

  • 이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 1994
  • Mg thin films were prepared on SPCC(cold-rolled steel) substrates by vasuum evapoaration and ion-plating. The influence of argon gas pressure and substrates bias voltage on the crystal orientation and morphology of the film was determined by using X-ray diffraction and scanning electron micrography (SEM), respectively. And the effect of crystal orientation and morphology of the Mg thin films on corrosion behavior was estimated by measuring the anodic polarization curves in deaerated 3% NaCl solution. The crystal orientation of the Mg films deposited at high argon gas pressure exhibited a (002) preferred orientation, regardless of the substrate bias voltage. Film morphology changed from a columnar to a granular structure with the increase of argon gas pressure. The morphology of the films depended not only on argon gas pressure but also bias voltage ; i.e., the effect of increasing bias voltage was similar to that of decreasing argon gas pressure. The influences of argon gas pressure and bias voltage were explained by applying the adsorption inhibitor theory and the sputter theory. And also, this showed that the corrosion resistance of the Mg thin films can be changed by controlling the crystal orientaton and morphology.

  • PDF

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

A STUDY ON BIOLOGICAL MARKERS FOR THE ASSESSMENT OF GENOTOXICITY AND OXIDATIVE DAMAGE IN CHROMIUM EXPOSED WORKERS.

  • Maeng, Seung-Hee;Hiroshi Kasai;Yu, Il-Je;Lee, Byung-Moo;Lee, Jong-Yoon;Lee, Kwon-Seob;Chung, Ho-Keun;Chung, Hai-Won
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.121-122
    • /
    • 2001
  • According to the epidemiological studies in chromium workers, hexavalent chromium is associated with the risk of lung cancer. Genotoxicity such as chromosome aberration, and cellular oxidative damages by reactive oxygen species produced by hexavalent chromium exposure may play an important role in the carcinogenesis process. We investigated the availabilities of several kinds of biological markers to assess the genotoxicity and oxidative damages from chromium exposure in Korean chromium plating workers.(omitted)

  • PDF

Synthesis of 58Ni Target and Co Diffused Rh Composite for Application of Mössbauer Source (뫼스바우어선원 적용을 위한 58Ni 표적체 및 Co가 확산된 Rh복합재 제조)

  • Uhm, Young Rang;Choi, Sang Mu;Kim, Jong-bum;Son, Kwang Jae
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.432-437
    • /
    • 2015
  • The en-riched $^{58}Ni$ powders are dissolved in acid solution and coated on a Cu target for proton irradiation at cyclotron to produce $^{57}Co$ radioisotope. The condition of the plating bath and the coating process are determined using the en-riched powders. To establish the coating conditions for $^{57}Co$, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a rhodium plate. The thermal diffusion of electroplated Co into a rhodium matrix was studied to apply a $^{57}Co$ Mssbauer source. The diffusion depth from surface to matrix of Co is depended on the annealing temperature and time. The deposited Co atoms diffuse completely into a rhodium (Rh) matrix without substantial loss at an annealing temperature of 1200 for 4 hours.

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

A Review of Pressure Tube Failure Accident in the CANDU Reactor and Methods for Improving Reactor Performance

  • Yoo, Ho-Sik;Chung, Jin-Gon
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.262-272
    • /
    • 1998
  • The experiences and causes of pressure tube cracking accidents in the CANDU reactors and the development of the fuel channel at AECL(Atomic Energy Canada Limited) have been described. Most of the accidents were caused by Delayed Hydride Cracking(DHC). In the cases of the Pickering units 3&4 and the Bruce unit 2, excessive residual stresses induced by an improper rolled joint process played a role in DHC. In the Pickering unit 2, cracks formed by contact between the pressure and calandria tubes due to the movement of the garter spring were the direct cause of the failure. To extend the life of a fuel channel, several R&D programs examining each component of the fuel channel have been carried out in Canada. For a pressure tube, the main concern is focused on changing the fabrication processes, e.g., increasing cold working rate, conducting intermediate annealing and adding a third element like Fe, V, and Cr to the tube material. In addition to them, chromium plating on the end fitting and increasing wall thickness at both ends of the calandria tube are considered. There has also been much interest in the improvement of fuel channel performance in our country and several development programs are currently under way.

  • PDF

Corrosion Characteristics and Surface Morphologies of TiN and ZrN Film on the Abutment Screw by Arc-ion Coating(II) (어버트먼트 나사에 아-크 이온도금된 TiN과 ZrN피막의 부식특성과 표면 형상 (II))

  • Jeong, Y.H.;Kwag, D.M.;Chung, C.H.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.212-217
    • /
    • 2011
  • In this study, corrosion characteristics of TiN and ZrN film on the abutment screw by arc-ion plating were investigated using a potentiodynamic anodic polarization test in deaerated 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The surface morphologies of the coating layers before and after corrosion test were investigated by a field-emission scanning electron microscope (FE-SEM) and a energy dispersive x-ray spectroscopy (EDS). The surfaces of the TiN and ZrN coated abutment screws showed the smooth surfaces without mechanical defects like scratches which can be formed during the manufacturing process, compared with those of the non-coated abutment screw. The corrosion and passive current densities of TiN and ZrN coated abutment screws were lower than those of the non-coated abutment screw.

Induction of Oxidative Stress by Hexavalent Chromium in Human Bronchial Epithelial Cells (BEAS-2B) (배양 기관지 상피세포(BEAS-2B cells)에서 6가 크롬에 의한 산화적 스트레스)

  • Park, Eun-Jung;Kang, Mi-Sun;Kim, Dae-Seon;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.357-363
    • /
    • 2006
  • Chromium compounds are widely used in diverse industries including pigment manufacturing, painting, metal plating and leather tanning. With the wide uses of chromium, various adverse effects of the compounds on the environment and human health have been reported. Among them, hexavalent chromium [Cr (VI)], which is a carcinogenic heavy metal, has been widely studies. Epidemiological investigations have shown that respiratory cancers had been found in workers who had been occupationally exposed to Cr (VI). In this study, cell toxicity and induction of reactive oxygen species (ROS) by Cr (VI) (1, 2, 4, $8{\mu}M$) in cultured human bronchial epithelial cells were investigated. Exposure of the cells to Cr (VI) led to cell death, ROS increase, and cytosolic caspase-3 activation. The ROS increase was related with the decreased level of GSH. Chromatin condensation and fragmentation were occurred by Cr (VI) when evaluated by DAPI staining or agarose gel electrophoresis of the extracted DNA. Expression of ROS related genes including glutathione S-transferase, heme oxygenase-1, metallothionein were significantly induced in Cr (VI) treated cells. This result suggests the toxicity in cultured cells by Cr (VI) was expressed through the apoptotic process with ROS induction.

Ni Coating Characteristics of High K Capacitor Ceramic Powders

  • Park, Jung-Min;Lee, Hee-Young;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-339
    • /
    • 2007
  • Metal coating on ceramic powder has long been attracting interest for various applications such as superconductor where the brittle nature of high temperature ceramic superconductor was complemented by silver coating and metalloceramics where mechanical property improvement was achieved via electroless plating. More recently it has become of great interest in embedded passive device applications since metal coating on ceramic particles may result in the enhancement of the dielectric properties of ceramic-polymer composite capacitors. In our study, nickel ion-containing solution was used for coating commercial capacitor-grade $BaTiO_3$ powder. After filtering process, the powder was dried and heat-treated in 5% forming gas at $900^{\circ}C$. XRD and TEM were utilized for the observation of crystallization behavior and morphology of the particles. It was found that the nickel coating characteristics were strongly dependent on the several parameters and processing variables, such as starting $BaTiO_3$ particle size, nickel source, solution chemistry, coating temperature and time. In this paper, the effects of these variables on the coating characteristics will be presented in some detail.

  • PDF