• Title/Summary/Keyword: platform selection

Search Result 178, Processing Time 0.024 seconds

Dynamic Tree Formation Protocol in UAV Formation Flying Network for Disaster Monitoring (재난 모니터링을 위한 편대비행 UAV 네트워크에서 동적 트리 형성 프로토콜)

  • Park, Jin-Hee;Kim, Yeon-Joo;Chung, Jin-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.271-277
    • /
    • 2012
  • In this paper, we propose a dynamic tree formation protocol for multiple UAV which is gathering data or accomplishing a mission such as disaster monitoring, environment monitoring, and disaster relief. Especilly, we designed Hop-LQI Weight algorithm to form optimal tree in wireless dynamic environment applying situation of radio signal attenuation over distance and implemented our algorithm in MSP 430 K-mote sensor platform using TinyOS codes. We verified performance of our algorithm by comparing average link setup time by the number of nodes with minimum LQI, link cost calculation method in wireless communication.

Chemogenomics Profiling of Drug Targets of Peptidoglycan Biosynthesis Pathway in Leptospira interrogans by Virtual Screening Approaches

  • Bhattacharjee, Biplab;Simon, Rose Mary;Gangadharaiah, Chaithra;Karunakar, Prashantha
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.779-784
    • /
    • 2013
  • Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an anti-leptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

An Integrative Approach to Precision Cancer Medicine Using Patient-Derived Xenografts

  • Cho, Sung-Yup;Kang, Wonyoung;Han, Jee Yun;Min, Seoyeon;Kang, Jinjoo;Lee, Ahra;Kwon, Jee Young;Lee, Charles;Park, Hansoo
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.77-86
    • /
    • 2016
  • Cancer is a heterogeneous disease caused by diverse genomic alterations in oncogenes and tumor suppressor genes. Despite recent advances in high-throughput sequencing technologies and development of targeted therapies, novel cancer drug development is limited due to the high attrition rate from clinical studies. Patient-derived xenografts (PDX), which are established by the transfer of patient tumors into immunodeficient mice, serve as a platform for co-clinical trials by enabling the integration of clinical data, genomic profiles, and drug responsiveness data to determine precisely targeted therapies. PDX models retain many of the key characteristics of patients' tumors including histology, genomic signature, cellular heterogeneity, and drug responsiveness. These models can also be applied to the development of biomarkers for drug responsiveness and personalized drug selection. This review summarizes our current knowledge of this field, including methodologic aspects, applications in drug development, challenges and limitations, and utilization for precision cancer medicine.

A Design and Implementation of Mobile Variability based on Android (안드로이드 기반 모바일 가변성 설계 및 구현)

  • Kim, Chul-Jin;Cho, Eun-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2338-2346
    • /
    • 2012
  • According to the size of mobile applications has been expanded, the coupling of among mobile applications or servers also will be growing. The growth of mobile application's size means that predicting design for variability should be involved. If mobile application's change is occurred, application should be reinstalled totally. However this reinstallation can raise side-effects in case of high-coupling applications. Therefore, this paper proposes a technique of designing variability for mobile applications in android platform. Proposed technique is separated into selection technique and plug-in technique.

Customization Technique of Web Service Protocol based on Android (안드로이드 기반의 웹 서비스 프로토콜 커스터마이제이션 기법)

  • Kim, Chul-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.92-99
    • /
    • 2012
  • According to the scale of mobile applications has been expanded, the high coupled application combined mobile and web service are growing. The growth of mobile application's size means that predicting design for variability should be involved. If mobile application's change is occurred, application should be reinstalled totally. However this reinstallation can raise side-effects in case of high-coupling application. Therefore, this paper proposes a technique of customization for changing web service protocol as the mobile applications are connected with web service in android platform. Proposed protocol customization technique is consist of selection and plug-in technique.

An Overview of Seabed Storage Methods for Pipelines and Other Oil and Gas Equipment

  • Fatah, M.C.;Mills, A.;Darwin, A.;Selman, C.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.76-84
    • /
    • 2017
  • In the construction of subsea oil and gas developments, it is increasingly common that subsea oil and gas equipment will be installed in subsea well before final hookup and production. Installation of wellheads, subsea hardware, pipelines, and surface facilities (platforms, FPSO, FLNG, connected terminals, or gas plants) are increasingly driven by independent cost and vessel availability schedules; this gives rise to requirements that the subsea facilities must be stored in the seabed for a specific time. In addition, schedule delays, particularly in the installation or startup of the connected platform, FPSO, FLNG, or onshore plant may cause unexpected extensions of the intended storage period. Currently, there are two methods commonly used for storage subsea facilities in the seabed: dry parking and wet parking. Each method has its own risks, challenges, and implications for the facility life and its integrity. The corrosion management and preservation method selection is a crucial factor to be considered in choosing the appropriate storage method and achieving a successful seabed storage. An overview of those factors is presented, along with a discussion on the internal corrosion threats and assessments.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

A study on the performance evaluation items of the private blockchain consensus algorithm considering consensus stability

  • Min, Youn-A
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Through the consensus algorithm, which is the core technology of the blockchain, the same data is accurately shared between connected nodes. The use of an appropriate consensus algorithm that considers the user and the usage environment ensures efficient maintenance of data integrity and accuracy. In this paper, we proposed a performance evaluation method for efficient selection of a consensus algorithm among authorized nodes considering the characteristics of a private blockchain platform, and applied the modified item to the existing published formula considering the number of authoritative connected nodes. Through this process, it was possible to simplify the consensus process considering the stability between nodes. The stability of the consensus process can be improved by selecting an appropriate consensus algorithm based on the proposed research.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Product Adoption Maximization Leveraging Social Influence and User Interest Mining

  • Ji, Ping;Huang, Hui;Liu, Xueliang;Hu, Xueyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2069-2085
    • /
    • 2021
  • A Social Networking Service (SNS) platform provides digital footprints to discover users' interests and track the social diffusion of product adoptions. How to identify a small set of seed users in a SNS who is potential to adopt a new promoting product with high probability, is a key question in social networks. Existing works approached this as a social influence maximization problem. However, these approaches relied heavily on text information for topic modeling and neglected the impact of seed users' relation in the model. To this end, in this paper, we first develop a general product adoption function integrating both users' interest and social influence, where the user interest model relies on historical user behavior and the seed users' evaluations without any text information. Accordingly, we formulate a product adoption maximization problem and prove NP-hardness of this problem. We then design an efficient algorithm to solve this problem. We further devise a method to automatically learn the parameter in the proposed adoption function from users' past behaviors. Finally, experimental results show the soundness of our proposed adoption decision function and the effectiveness of the proposed seed selection method for product adoption maximization.