• Title/Summary/Keyword: platelet structure

Search Result 59, Processing Time 0.03 seconds

Snake Venom Phospholipase A2 and its Natural Inhibitors

  • Singh, Pushpendra;Yasir, Mohammad;Khare, Ruchi;Tripathi, Manish Kumar;Shrivastava, Rahul
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.259-267
    • /
    • 2020
  • Snakebite is a severe medical, economic, and social problem across the world, mostly in the tropical and subtropical area. These regions of the globe have typical of the world's venomous snakes present where access to prompt treatment is limited or not available. Snake venom is a complex mixture of toxin proteins like neurotoxin and cardiotoxin, and other enzymes like phospholipase A2 (PLA2), haemorrhaging, transaminase, hyaluronidase, phosphodiesterase, acetylcholinesterase, cytolytic and necrotic toxins. Snake venom shows a wide range of biological effects like anticoagulation or platelet aggregation, hemolysis, hypotension and edema. Phospholipase A2 is the principal constituent of snake venom; it catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid, which is the precursor of eicosanoids including prostaglandins and leukotrienes. The information regarding the structure and function of the phospholipase A2 enzyme may help in treating the snakebite victims. This review article constitutes a brief description of the structure, types, mechanism occurrence, and tests of phospholipase A2 and role of components of medicinal plants used to inhibit phospholipase A2.

Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation

  • Xiangling Wang;Xiaofeng Guo;Masoud Babaei;Rasoul Fili;Hossein Farahani
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Natural frequency behavior of graphene platelets reinforced composite (GPL-RC) joined truncated conical-cylindrical- conical shells resting on Winkler-type elastic foundation is presented in this paper for the first time. The rule of mixture and the modified Halpin-Tsai approach are applied to achieve the mechanical properties of the structure. Four different graphene platelets patterns are considered along the thickness of the structure such as GPLA, GPLO, GPLX, GPLUD. Finite element procedure according to Rayleigh-Ritz formulation has been used to solve 2D-axisymmetric elasticity equations. Application of 2D axisymmetric elasticity theory allows thickness stretching unlike simple shell theories, and this gives more accurate results, especially for thick shells. An efficient parametric investigation is also presented to show the effects of various geometric variables, three different boundary conditions, stiffness of elastic foundation, dispersion pattern and weight fraction of GPLs nanofillers on the natural frequencies of the joined shell. Results show that GPLO and BC3 provide the most rigidity that cause the most natural frequencies among different BCs and GPL patterns. Also, by increasing the weigh fraction of nanofillers, the natural frequencies will increase up to 200%.

Synthesis of GaN micro-scale powder and its characteristics (GaN 미세 분말의 합성과 특성)

  • 조성룡;여용운;이종원;박인용;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.554-557
    • /
    • 2001
  • In this work, we had synthesis the GaN powder by direct reaction between Ga and NH$_3$at the temperature range of 1000∼1150$^{\circ}C$, and investigated the reaction condition dependence of the GaN yield and some properties of GaN powder. The synthesized powder had Platelet and prismatic shape and showed hexagonal crystalline structure with the lattice constants of a= 3.1895 ${\AA}$, c= 5.18394 ${\AA}$, and the ratio of c/a = 1.6253. The GaN powder synthesis processes were examined based on the oxidation process of mater, and found as combined with mass transport process for the initial stage and diffusion-limited reaction for the extended reaction.

  • PDF

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

SAR of COX-2 Inhibitors (COX-2 억제제의 구조-활성)

  • 권순경
    • Biomolecules & Therapeutics
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2001
  • Cyclooxygenase (COX) is an enzyme, which catalyzes the production of prostaglandins from arachi-donic acid and exists in two isoforms (COX-1 and COX-2). COX-1 is involved in the maintenance of physiological functions such as platelet aggregation, cytoprotection in the stomach and maintenance of normal kidney function. COX-2 is induced significantly in vivo under inflammatory conditions. COX-1 and COX-2 serve different physiological and pathological functions. All commercially available nonsteroidal antiinflammatory drugs (NSAIDS) are inhibitors of both COX-1 and COX-2. Therefore, selective inhibitors of COX-2 may be effective antiinflammatory agents without the ulcerogenic effects associated with current NSAms. Since the mid 1990s, a number of reports have been appeared on the preparation and biological activity of selective COX-2 inhibitors. Recently celecoxib, and rofecoxib, the representative COX-2 inhibitors, are introduced in the drug market. In this paper the relationship of structure-activity for selective COX-2 inhibitors is reviewed.

  • PDF

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

The Effect of Platelet Derived Growth Factor - BB Loaded Chitosan/Calcium Metaphosphate on Bone Regeneration (혈소판유래성장인자를 함유한 Chitosan/Calcium Metaphosphate의 골조직재생효과에 관한 연구)

  • Lee, Seung-Yeol;Seol, Yang-Jo;Lee, Yong-Moo;Lee, Ju-Yeon;Lee, Seung-Jin;Kim, Suk-Young;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • Chitosan is biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with $100-200\;{\mu}m$ pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with $^{125}I-labeled$ PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further echanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.

  • PDF

Phase Identification of the Interfacial Reaction Product of $SiC_p/Al$ Composite Using Convergent Beam Electron Diffraction Technique (수렴성 빔 전자회절법을 이용한 $SiC_p/Al$ 복합재에서의 계면 생성물의 상분석)

  • Lee, Jung-Ill;Lee, Jae-Chul;Suk, Hyun-Kwang;Lee, Ho-In
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.95-104
    • /
    • 1996
  • A comprehensive methodology to characterize the interfacial reaction products of $SiC_p/2024$ Al composites is introduced on the basis of the experimental results obtained using XRD, SEM and TEM. XRD performed on the electrochemically extracted $SiC_p$ and bulk $SiC_p/2024$ Al composite have shown that the interfacial reaction products consist of $Al_{4}C_3$ having hexagonal crystallographic structure, pure eutectic Si having diamond cubic crystallographic structure, and $CuAl_2$, having tetragonal crystalloraphic structure, respectively. According to the images observed by SEM, $Al_{4}C_3$, which has been reported to have needle shape, has a hexagonal platelet-shape and eutectic Si is found to have a dendritic shape. In addition eutectic $CuAl_2$, was observed to form near interface and/or along the grain boundaries. In order to confirm the results obtained by XRD, the primitive cell volume and reciprocal lattice height of such interfacial reaction products were calculated using the data obtained from convergent beam electron diffraction (CBED) patterns, and then compared with theoretical values.

  • PDF

Comparison of Antiplatelet Activities of Green Tea Catechins

  • Cho, Mi-Ra;Jin, Yong-Ri;Lee, Jung-Jin;Lim, Yong;Kim, Tack-Joong;Oh, Ki-Wan;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We have previously reported that green tea catechins(GTC) displayed potent antithrombotic effect, which was due to the antiplatelet activity. In the present study, the antiplatelet activity of each green tea catechin components was compared in vitro. Galloylated catechins including (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG), significantly inhibited collagen $(5{\mu}g/mL)-induced$ rabbit platelet aggregation with $IC_{50}$ values of 79.8, 63.0, 168.2 and $67.3{\mu}M$, respectively. EGCC GCG and CG also significantly inhibited arachidonic acid (AA, $100{\mu}M$)-induced rabbit platelet aggregation with $IC_{50}$ values of 98.9, 200.0 and $174.3{\mu}M$, respectively. However catechins without gallate moiety showed little inhibitory effects against rabbit platelet aggregation induced by collagen or AA compared with galloylated catechins. These observations suggest that the presence of gallate moiety at C-3 position may be essential to the antiplatelet activity of catechins and the presence of B ring galloyl structure may also contribute to the antiplatelet activity of GTC. In line with the inhibition of collagen-induced platelet aggregation, EGCG caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation and serotonin secretion. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, although slightly inhibited collagen-stimulated cytosolic calcium mobilization, failed to affect other signal transductions as EGCG in activated platelets. Taken together, these observations suggest that the antiplatelet activity of EGCG may be due to inhibition of arachidonic acid liberation and inhibition of $Ca^{2+}$ mobilization and that the antiplatelet of EGCG is enhanced by the presence of a gallate moiety esterified at carbon 3 on the C ring.

Fracture Analysis of Bone-Like Materials Using J integral (J 적분을 이용한 뼈와 유사한 재료의 파괴 해석)

  • Lee, Chang-Woo;Lin, Song;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.52-57
    • /
    • 2010
  • The analysis of a crack in a bone-like material is performed numerically. The bone-like material is hierarchically structured and each hierarchy is structured by mineral platelets and protein matrix through staggered arrangement. Mechanical behavior of the composite can be analyzed using tension shear chain model. The Dugdale model is adopted to evaluate the fracture energy of Bone-like material. The fracture energy dissipation is assumed to concentrate within a strip near the crack tip along the prospective crack path. Fracture criterion of the bone-like material is estimated by using J integral. Effects of hierarchical level, ratio of elastic modulus of mineral to protein, aspect ratio of mineral platelet and volume fraction on J integral are investigated. It is found that the J integral decreases as elastic modulus ratio and hierarchy level increase. It is also shown that the J integral increases as the volume fraction and aspect ratio decrease.