• Title/Summary/Keyword: plate-column connection

Search Result 196, Processing Time 0.022 seconds

Lateral Resisting Capacity for CFT Column to RC Flat Plate Slab Exterior Connections (CFT 기둥-RC 무량판 슬래브 외부접합부의 횡저항 성능)

  • Song, Ho-Beom;Song, Jin-Kyu;Oh, Sang-Won;Kim, Byung-Jo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.61-64
    • /
    • 2008
  • A combination of CFT column and RC flat plate without formworks is very effectively rapid constructions. This paper verified the lateral resisting capacity of CFT column-RC flat plate exterior connection in comparison with general RC column-flat plate connection and detected moment capacity and ductility capacity of connection according to moment-displacement ratio. We made and tested specimens which have different variables respectively and as a result derive a following conclusion. In CFT-E2 specimen a critical section was extended and maximum moment increased 20% respectively in comparison to general RC column specimen. In BME and CFT-E1 specimens generally shear governed behaviors and CFT-E2 specimen complemented with seismic band, flexure behavior region of slab was extended and also ductility ratio and energy absorptance increased.

  • PDF

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (콘크리트 충전각형강관 (CFT)기둥과 철근콘크리트 무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol Ho;Kim, Jin Won;Oh, Jeong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.481-490
    • /
    • 2005
  • This paper summarizes the full-scale test results on the CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. Constructing an underground parking floor as a flat plate system is often regarded as essential for both cost savings and rapid construction. Efficient details for CFT-column-to-flat-plate connections have not been proposed yet, however, and their development is urgently needed. Based on some strategies that maximize economical field construction, several connecting schemes were proposed and tested based on a full-scale model. The test results showed that the proposed connection details can exhibit punching shear strength and connection stiffness comparable to or greater than those of their R/C flat plate counterpart.

Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections (복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험)

  • Lim, Jong Jin;Kim, Dong Gwan;Lee, Sang Hyun;Lee, Chang Nam;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.345-354
    • /
    • 2016
  • In the present study, hybrid moment connections of welding and bar reinforcement for composite beam-column connections were proposed. Concrete-filled octagonal tube and U-section were used for the column and beam, respectively. In the beam-column connection, the top flange and web of the beam U-section were connected to the column plate by welding. However, to reduce stress concentration at the weld joints, the bottom flange of the beam was not welded to the column plate. Instead, to transfer the tension force of the beam flange, reinforcing bars passing through the column plate were used. Four exterior connections with conventional welded and hybrid moment connections were tested under cyclic loading and their cyclic behaviors were investigated. The test results showed that the hybrid moment connections successfully transferred the beam moment to the column. The strength and ductility of the hybrid moment connections were comparable to the conventional welded moment connection with exterior diaphragm; however, the connection performance was significantly affected by the details of the hybrid moment connection.

Analysis of end-plate connections at elevated temperatures

  • Lin, Shuyuan;Huang, Zhaohui;Fan, Mizi
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.81-101
    • /
    • 2013
  • In this paper a robust 2-noded connection element has been developed for modelling the bolted end-plate connection between steel beam and column at elevated temperatures. The numerical procedure described is based on the model proposed by Huang (2011), incorporating additional developments to more precisely determinate the tension, compression and bending moment capacities of end-plate connection in fire. The proper failure criteria are proposed to calculate the tension capacity for each individual bolt row. In this new model the connection failure due to bending, axial tension, compression and shear are considered. The influence of the axial force of the connected beam on the connection is also taken into account. This new model has the advantages of both the simple and component-based models. In order to validate the model a total of 22 tests are used. It is evident that this new connection model has ability to accurately predict the behaviour of the end-plate connection at elevated temperatures, and can be used to represent the end-plate connections in supporting performance-based fire resistance design of steel-framed composite buildings.

Development and Performance Evaluation of the Fourth Generation H-section Beam-to-Column Weak Axis Connection for Improving Workability (시공성 향상을 위한 제4세대 H형강 기둥-보 약축접합부의 개발 및 성능평가)

  • Kim, Pil-Jung;Boo, Yoon-Seob;Yang, Jae-Guen;Lee, Eun-Taik;Kim, Sang-Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.295-304
    • /
    • 2011
  • Bracket-type connection is often used for the weak-axis steel connection. In general, a beam-to-column connection for the bracket type is fabricated at the shop and abeam splice is additionally attached to the bracket in the site. Therefore, steel construction would not be competitive due to the increase of beam splice fabrication cost and overall construction period. This paper now proposes the new weak-axis connection types without a scallop, which has more definite strength flow, simple connection details, and better workability. From the series of experiments, the proposed connections showed better strength and ductility in comparison with standard details with scallop because the thickness of the welding plate for wide-flanged, beam-to-column connection can be easily adjusted.

Ductility Evaluation of Flat Plate Slab- Precast Concrete Shell Column Connection (플랫 플레이트 슬래브-중공 PC기둥 접합부의 연성평가)

  • Yang, Won-Jik;Park, Jin-Young;Yi, Waon-Ho;Ryu, Hong-Sik;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.75-76
    • /
    • 2009
  • Recently, Construction Business, is changing very quickly, exceedingly needs to slim down the expensive by material costs and term of works. Because of that reason, new technologies of construction studies are very popular. It is part of a Shell PC column. Therefore, intend of study was to investigate the response of column-slab connection of Shell PC column and flat plate slab that has been widely used in high rise buildings.

  • PDF

Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames (P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.347-356
    • /
    • 2005
  • Recently, pre-engineering building (P.E.B.) systematic frames are increasingly being used in steel factory buildings, but almost of the related techniques are dependent on the engineering program (e.g, MBS, LTI), which is usually imported from other countries. These are designed under the AISC-ASD because at present there is no Korean design code for P.E.B. frames. Also, there are few studies onbehaviour and we need to develop the element techniques by using H-shaped components.In particular, there is a tendency towards overestimated design because column-rafter connections have been designed with extended end plate type joint, which is treated asrigid joint,so structural examinations are needed. Therefore, this study represents a basic step in ascertaining the application of P.E.B. systematic frames by using H-shaped column-rafter connectionwith flush type end plate. Its structural performance is compared with that of existing extended type joint using a structural performance test. The structural behaviour of specimen was understood qualitatively and the possibility of application (e.g, design aid charts) of semi-connection (flush type) with H-shaped column-rafter was determined.

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Seung-Dong;Ahn, Jae-Kwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF