• 제목/요약/키워드: plate motion model

검색결과 204건 처리시간 0.031초

2D ANALYTICAL MODEL OF THE FSW WELD ZONE AND FINITE ELEMENT HEAT TRANSFER ANALYSIS

  • S.R, Rajesh;Bang, Han-Sur;Kim, Heung-Ju;Bang, Hee-Seon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.135-137
    • /
    • 2005
  • The body of the work covers FSW welding of Al6061 and its thermal distribution based on an analytical model for the heat input at the probe/matrix boundary of Al plates and FSW tool due to the effect of combined translation and rotational motion of the tool pin and shoulder. Finally the 2D- finite element heat transfer analysis program has been used to plot the heat distribution at the Friction Stir Welded joint in Al 6061 plate. The work concludes that the heat distribution result obtained from FE analysis has a reasonable agreement with the experimentally measured values.

  • PDF

급진하는 반무한 평판 주위의 보텍스 운동 (Vortex Motion near the Edge of a Semi-Infinite Flat Plate Impulsively Started Transversally)

  • ;서룡권;서이수
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.83-89
    • /
    • 1988
  • 정지된 유동장에 놓인 반무한 평판이 횡방향으로 갑자기 출발하는 경우에 있어서 평판의 끝에서 발생하는 보텍스의 거동을 해석적 및 수치적 측면에서 검토하였다. 해석적 방법은 단일 보텍스 모델에 근거를 두었으며, 해석결과 순환량은 시간의 1/3승, 보텍스의 중심까지의 거리는 시간의 2/3승에 비례하여 증가함을 알 수 있었다. 룬게.쿠타(Runge-Kutta)방법을 써서 분리 보텍스 모델에 따른 비선형 운동방정식의 해를 수치적으로 구했다. 수치해는 시간의 경과에 따라 해석 해에 접근하였다. 보텍스의 형상에 있어서도 실험결과와 잘 맞았다.

  • PDF

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

최적의 타공판을 통한 열풍건조로 성능향상 연구 (Performance Improvement of Hot-Air Dryer Through Optimum Round-Hole Plate)

  • 서응수;김용식;황중국;채영석;심재술
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.947-954
    • /
    • 2015
  • 염료감응형 태양전지용 플렉시블 필름에 도포된 코팅물질의 균질한 코팅은 제품의 성능과 내구성과 매우 밀접한 관계가 있고, 균질한 코팅은 열풍건조로 노즐에서의 균일한 온도분포와 질량유량에 의해 얻어질 수 있다. 본 연구에서 열풍건조로의 성능향상에 영향을 주는 다양한 인자들에 대한 수치해석을 수행함으로써 열풍건조로 출구의 균일한 온도분포와 질량유량을 얻고자 하였다. 수치해석 모델은 유동방정식과 에너지방정식으로 구성되었고, 수치해석을 모델의 검증을 위해 수치해석 결과값과 실험결과를 비교하였다. 연구결과로서 열풍건조로의 타공판이 균일한 온도분포 및 질량유량에 큰 영향을 미친다는 것을 알 수 있었다.

디지털 실험장치를 이용한 판의 모우드 해석 (Model Analysis of Plate using by Digital Test System)

  • 홍봉기;배동명;배성용
    • 수산해양기술연구
    • /
    • 제29권1호
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

가방 하중의 크기와 방식에 따른 척추 정적 자세의 변화 (Alteration of the Static Posture of Spine under Different Types and Amounts of Loading)

  • 박용현;김영관;김윤혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.230-236
    • /
    • 2011
  • The aim of this study was to investigate the alteration of lumbar spine and trunk postures on different load-carrying types and amounts under static loading. Two load-carrying types(unilateral carrying: UC vs. bilateral carrying: BC) and four different loads(0, 5, 10, and 15 kg) were randomly tested in this study. Carrying a heavy bag would affect human body posture, specifically lumbar spine curvature, which is considered as one of sources of back problems. Previous studies have not paid attention to the approach of the multisegment model of the lumbar spine and trunk. This study separated two compartments of trunk segment(the lumbar and thorax) in the analysis. The multisegment model of the lumbar spine in addition to Helen-Hayes marker set was used. Eight motion analysis cameras and a force plate were utilized. Ten male subjects(mean mass, $70.6{\pm}3.97$ kg; mean height, $178{\pm}4.18$ m) having no musculoskeletal disease participated in this study. We analyzed trunk angles in three anatomical planes and the spinal curvature in sagittal and frontal planes. Increased loading in both UC and BC significantly resulted in increases in trunk forward lean but only UC induced increases in trunk lateral lean. In addition, increased loading in BC produced flatten lumbar curvature in sagittal plane. As far as coupling motion, subjects tended to use axial rotation of the lumbar spine in transverse plane in response to increased UC loading. Finally, it is concluded that the increased static loading in UC rather than in BC tends to causes combined alterations of the spinal postures(sagittal and transverse planes together), which would be vulnerable to improper mechanical stresses on the spine.

튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구 (A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model)

  • 김일곤;박진무
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

제한면을 가지는 이차원 난류 충돌젯트의 유동 및 열전달 특성의 수치적 연구 (A Numerical Study of the Fluid Flow and Heat Transfer Characteristics of the Two-Dimensional Turbulent Impingement Jet with a Confinement Plate)

  • 강동진;오원태
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1675-1683
    • /
    • 1995
  • A numerical study of the fluid flow and heat transfer characteristics of the two-dimensional impingement jet with a confinement plate has been carried out. The fluid flow was calculated by solving the full Navier-Stokes equation. In doing that, the well known SIMPLER algorithm was used and the trouble making convection term was discretized according to QUICKER scheme. The energy equation was simply solved by using the SOR method. For the Reynolds number of 10000, two channel heights, say 1.5 and 3.0 times the jet exit width, and two thermal boundary conditions constant wall temperature and constant wall heat flux were considered. Discrete heat sources were flush mounted along the impingement plate at a distance of 0, 2, 3, 4, 5, 6, 10, 12, times the jet exit width from the stagnation point. The length of each heat source is 4 times the jet exit width long. The Nusselt number averaged over each heat source was compared with experiment. Comparison shows that both calculations and experiment have the secondary peak of Nusselt number at downstream of stagnation point, even though there is a little quantitative difference in between. The difference is believed due to abscure thermal boundary condition in experiment and also accuracy of turbulence model used. The secondary peak is shown to be caused by rigorous turbulent flow motion generated as the wall jet flow is retarded and developes into the channel flow without flow reversal.

Investigation of influence of homogenization models on stability and dynamic of FGM plates on elastic foundations

  • Mehala, Tewfik;Belabed, Zakaria;Tounsi, Abdelouahed;Beg, O. Anwar
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.257-271
    • /
    • 2018
  • In this paper, the effect of the homogenization models on buckling and free vibration is presented for simply supported functionally graded plates (FGM) resting on elastic foundation. The majority of investigations developed in the last decade, explored the Voigt homogenization model to predict the effective proprieties of functionally graded materials at the macroscopic-scale for FGM mechanical behavior. For this reason, various models have been used to derive the effective proprieties of FGMs and simulate thereby their effects on the buckling and free vibration of FGM plates based on comparative studies that may differ in terms of several parameters. The refined plate theory, as used in this paper, is based on dividing the transverse displacement into both bending and shear components. This leads to a reduction in the number of unknowns and governing equations. Furthermore the present formulation utilizes a sinusoidal variation of displacement field across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the buckling and free vibration analysis are obtained for simply supported plates. The obtained results are compared with those predicted by other plate theories. This study shows the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Comprehensive visualization of results is provided. The analysis is relevant to aerospace, nuclear, civil and other structures.

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima;Benrahou, Kouider Halim;Belkorissat, Ismahene;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.227-249
    • /
    • 2016
  • The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.