• Title/Summary/Keyword: plate equation

Search Result 805, Processing Time 0.025 seconds

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

Thermo-Dynamic Response of a Composite Plate with Embedded SMAs (형상기억합금이 삽입된 복합재료 평판의 동적특성 연구)

  • Roh, Jin-Ho;Han, Jae-Hung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.10-13
    • /
    • 2003
  • The dynamic analysis of composite plate with embedded shape memory alloys (SMAs) is studied using the finite element method. Active frequency tuning of a composite plate under electrical heating of SMAs is analyzed. The actuation of SMAs is modeled by Brinson's one-dimensional constitutive equation. The influences of the boundary conditions, the ply orientations and the pre-strains of SMA wires on the thermo-dynamic response of composite plate are discussed. It is found that the effect of SMAs on the dynamic response of composite plate is significant.

  • PDF

Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions

  • Ghasemabadian, M.A.;Kadkhodayan, M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.271-299
    • /
    • 2016
  • In this article, based on the higher-order shear deformation plate theory, buckling analysis of a rectangular plate made of functionally graded piezoelectric materials and its effective parameters are investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate is presented for both open and closed circuit conditions. It is found that the critical buckling load for open circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the influence of dielectric constants on the critical buckling load is more than those of others.

Innovative iteration technique for large deflection problem of annular plate

  • Chen, Y.Z.
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.605-620
    • /
    • 2013
  • This paper provides an innovative iteration technique for the large deflection problem of annular plate. After some manipulation, the problem is reduced to a couple of ODEs (ordinary differential equation). Among them, one is derived from the plane stress problem for plate, and other is derived from the bending of plate. Since the large deflection for plate is assumed in the problem, the relevant non-linear terms appear in the resulting ODEs. The pseudo-linearization procedure is suggested to solve the problem and the nonlinear ODEs can be solved in the way for the solution of linear ODE. To obtain the final solution, it is necessary to use the iteration. Several numerical examples are provided. In the study, the assumed value for non-dimensional loading is larger than those in the available references.

EN 1991-2 traffic loads design charts for closed rib orthotropic deck plate based on Pelikan-Esslinger method

  • Vlasic, Andjelko;Radic, Jure;Savor, Zlatko
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.303-323
    • /
    • 2009
  • Charts for the bending moments in the closed rib orthotropic deck plate are derived, based on the method originally introduced by Pelikan and Esslinger. New charts are done for EN 1991-2 traffic load distribution schemes. The governing Huber plate equation is solved utilizing Fourier series for various bridge deck plate boundary conditions. Bending moments are given as a function of deck plate rigidities and span length between cross beams. Old diagrams according to DIN 1072, the new ones according to EN 1991-2 and FE analyses results are compared. For typical bridge orthotropic deck plates, it can be concluded that the new EN 1991-2 traffic loads produce larger mid-span bending moments when two lane schemes are used, then those of DIN 1072. For support moments, DIN 1072 gives larger values for any number of lanes, especially under span lengths of 5m. The relevant differences are up to 25%.

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

A New Wall-Distance Free One-Equation Turbulence Model

  • Nakanishi Tameo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-109
    • /
    • 2003
  • We propose a wall distance free one-equation turbulence model. The model is organized in an extremely simple form. Only a few model constants were introduced into the model. The model is numerically tough and easy-of-use. The model also demonstrated the ability to simulate the laminar to turbulent flow transition. The model has been applied to the channel flow, the plane jet, the backward facing step flow, the flat plate boundary layer, as well as the flow around the 2D airfoil at large angles of attack, which obtained satisfactory results.

  • PDF

Investigation of Low Velocity Impact Behavior of Laminated Composite Plates Considering the Stacking Method (적층방법에 따른 복합적층판의 저속충격거동 조사)

  • Kim, Seung-Deog;Kwon, Suk-Jun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.75-83
    • /
    • 2010
  • Laminated composite plates have shown their superiority over metals in applications requiring high specific strength, high specific modulus, and so on. Therefore, they have used in various industry. However, they have poor resistance to impact compared to typical metal materials. So, many researchers have investigated about impact behavior of laminated composite plate. To investigate impact behavior of laminated composite plate, we have to calculate contact force between impactor and laminated composite plate at the first. Impactor's equation of motion, plate's equation of motion and correlations for indentation were solved to know the contact force at the same time. In this study, low velocity impact behavior of composite plate was investigated using the finite element program which is involved the classical Hertzian law, Sun's law and Sun & Yang's experimental law and Sun & Tan's experimental law considering the stacking method.

  • PDF

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs under Lateral Loads (횡하중하의 포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2009
  • Effective beam width model(EBWM) has been used for analysis of post-tensioned(PT) flat plate slab frames under lateral loads. The accuracy of this model in predicting lateral drifts and unbalanced moments strongly depends on the estimated effective stiffness of PT flat plate slabs. As moments on the slab due to lateral loads increases, cracks occur which leads to stiffness reduction in slabs. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for EBWM. For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis using the stiffness ratio of the reduced width of slab to the effective width of EBWM with respect to the level of slab moments, an equation for calculating stiffness reduction factor for slab is proposed. For verifying the accuracy of the proposed equation, this study compared with the test result of the PT flat plate frame. It is shown that the EBWM with the proposed equation predicts the actual stiffness of the PT specimen which varied according to the level of applied moment.

Free Vibration Analysis of Combined Cylindrical Shells with an Annular Plate Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 자유진동해석)

  • Chung Kang;Kim Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.439-446
    • /
    • 2005
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.