• Title/Summary/Keyword: plate boundaries

Search Result 112, Processing Time 0.017 seconds

Students' Alternative Conceptions of Plate Boundaries and Their Conception Revision According to Their Reasoning Patterns

  • Park, Su-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.385-398
    • /
    • 2014
  • This study investigated students' alternative conceptions of plate boundaries and their conception revision according to the pattern of students' reasoning. Participants were twenty-two 10th grade high school students. All participants were asked to draw the three types of plate boundaries and to explain their drawings. Nine students participated in the reasoning activity. To this end, a semi-structured interview was conducted during which key questions were asked for the students to individually answer. The key questions used in the reasoning activity were created, by utilizing questions used in the previous studies. The findings revealed that the alternative conceptions of plate boundaries were classified into three levels based on established criteria. Students who attempted a variety of reasoning strategies such as causal reasoning, using an analogy, abductive reasoning, data reconstruction and concept combination, revised their alternative conception to a scientific conception after the reasoning activity. On the other hand, some students could not revise their alternative conceptions because they only conducted an incomplete reasoning strategy. The study also found that they were unable to use other reasoning strategies, either.

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

An Analysis of High School Students' Mental Models on the Plate Boundaries (판의 경계에 대한 고등학생들의 정신모형 분석)

  • Park, Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.111-126
    • /
    • 2009
  • The purpose of this study was to derive the criterions of each type of mental models on the plate boundaries and to investigate high school students' mental models on these concepts. The 11th grade student participants were requested to draw the collisional, convergent, and divergent boundaries and were interviewed individually. The drawings and the data gathered through the interviews were analyzed qualitatively. The mental models on the plate boundaries were classified as 'naive model', 'unstable model', 'causal model', and 'conceptual model'. The criterions for analyzing the mental models were the differentiations of the lithospheric plates and the mantle, the explanations of the motion of the plates and lower mantle, the demonstrations of topographical features of the plate boundaries and the causal relationships between the mantle convection and the topographical features. The findings revealed that the students holding 'the naive model' and 'the unstable model' were unable to relate the mantle convection and the three boundaries. In contrast, the students holding 'the causal model' and 'the conceptual model' were able to explain that the mantle convection causes the three boundaries. Also, the types of epistemological belief were different depending on their mental models. Students holding the naive model and the unstable model tended to rely upon the external authorities.

Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads

  • Mouayed H.Z., Al-Toki;Wael Najm, Abdullah;RidhaA., Ahmed;Nadhim M., Faleh;Raad M., Fenjan
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.831-837
    • /
    • 2022
  • Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads has been presented by assuming that the plate has three layers which are a foam core and two skins. The foam core made of Aluminum has porosities with uniform and graded dispersions. The sandwich plate has been supposed to be affected by periodical compressive loads. Also, temperature variation causes uniform thermal load. The formulation has been established based upon a higher-order plate theory and Ritz method has been used to solve the equations of motion. The stability boundaries have also been obtained performing Bolotin's method. It will be indicated that stability boundaries of the sandwich plate depend on periodical load parameters, porosities, skin thickness and temperature.

The Effect of Visual Representation in Plate Tectonics Topics on High School Students' Conceptions on Plate Tectonics (판 구조론 학습에 사용되는 시각적 표상이 판구조론 개념에 대한 고등학생들의 응답에 미치는 영향)

  • Lee, Mi-Suk;Jeong, Jin-Woo;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.2
    • /
    • pp.214-225
    • /
    • 2014
  • This study aimed to investigate the high school students' conceptions about the plate tectonics through visual representation. For this purpose, the subjects were 67 students in 11th-grade high schools in Chungbuk. In order to in-depth understand the students' conceptions about plate tectonics, so the investigator conducted a semi-structured interview. The conclusions were as in the following. After learning the plate tectonics, the students had the alternative conceptions associated with terminology, colors' meanings, plate-related melting, plate's movement, plates' boundaries, mantle's physical conditions, driving forces for plate movement, and they had the organic relations about colors' meanings, mantle's physical conditions, and driving forces of plate movement. Also, the visual representation used to teach plate tectonics influenced on the students' responses about terminology, plates' boundaries, plate-related melting and the mantle's physical features, also this study found the factors of visual representation causing the learners to create alternative conceptions. These results implicated the importance of teacher's role in identifying the students' interpretation process on visual representation, and it needed to improve the factors creating students' alternative conceptions about visual representation and to study the factors further.

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

Numerical Simulation of Stress Waves in Plates with Material Interfaces (물질경계면을 갖는 판에서의 응력파에 대한 수치해석)

  • Kyung-Su Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.114-122
    • /
    • 1995
  • In this paper a computational method is presented to solve the plane problem of wave propagation in linear-elastic plate with zones of different materials. An existing numerical scheme of bicharacteristics for rectangular plate is extended to plates with curvilinear boundaries. In order to show the validity of the employed concept, it is necessary to examine the numerical results whether they reproduce the well-known physical phenomena of stress waves. It seems also desirable to make a comparison between the numerical results and appropriate experimental results for plates with curvilinear boundaries. Also studied are the focusing phenomena induced by reflection and refraction at curved outer boundaries and material interfaces.

  • PDF

Investigating dynamic stability behavior of sandwich plates with porous core based on a numerical approach

  • Zhu, Zhihui;Zhu, Meifang
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.609-615
    • /
    • 2022
  • A numerical approach for dynamic stability analysis of sandwich plates has been provided using Chebyshev-Ritz-Bolotin approach. The sandwich plate with porous core has been formulated according to a higher-order plate. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The sandwich plate has also been assumed to be under periodic in-plane loading of compressive type. It will be shown that stability boundaries of the sandwich plate are dependent on static and dynamical load factors, porosity factor, porosity variation and core thickness.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.