• Title/Summary/Keyword: plate bending

Search Result 1,040, Processing Time 0.025 seconds

Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations

  • Merazka, Bouzid;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.631-643
    • /
    • 2021
  • The aim of this work is to study the hygro-thermo-mechanical bending responses of simply supported FG plate resting on a Winkler-Pasternak elastic foundation. The effect transverse shear strains is taken into account in which the zero transverse shear stress condition on the top and bottom surfaces of the plate is ensured without using any shear correction factors. The developed model contains only four unknowns variable which is reduced compared to other HSDTs models. The material properties of FG-plate are supposed to vary across the thickness of the plate according to power-law mixture. The differential governing equations are derived based on the virtual working principle. Numerical outcomes of bending analysis of FG plates under hygro-thermo-mechanical loads are performed and compared with those available in the literature. The effects of the temperature, moisture concentration, elastic foundation parameters, shear deformation, geometrical parameters, and power-law-index on the dimensionless deflections, axial and transverse shear stresses of the FG-plate are presented and discussed.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

Fourier series expansion method for plated-structures

  • Deng, Jiann-Gang;Cheng, Fu-Ping
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.343-360
    • /
    • 1999
  • This work applies a structural analysis method based on an analytical solution from the Fourier series which transforms a half-range cosine expansion into a static solution involving plated structures. Two sub-matrices of in-plane and plate-bending problems are also formulated and coupled with the prescribed boundary conditions for these variables, thereby providing a convenient basis for a numerical solution. In addition, the plate connection are introduced by describing the connection between common boundary continuity and equilibrium. Moreover, a simple computation scheme is proposed. Numerical results are then compared with finite element results, demonstrating the numerical scheme's versatility and accuracy.

Elastic Buckling Characteristics of Plate Girder Web Panel (경량전철 2주형 판형교 복부판의 탄성좌굴 특성)

  • 황민오;성택룡;윤태양;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.344-351
    • /
    • 2000
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear, pure bending and combined bending and shear. Currently, elastic buckling coefficients of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the plate girder bridge, upper juncture between the flange and web can be assumed as fixed because concrete deck prevents the rotational displacement of upper flange. In the present study, a series of numerical analyses based on finite element modeling is carried out to investigate the effects of the concrete deck, and the resulting data are quantified in simple equations.

  • PDF

Variational Formulation of Hybrid-Trefftz Plate Elements and Evaluation of Their Static Performance (하이브리드 트레프츠 평판 요소의 변분 수식화와 성능 평가)

  • Choo, Yeon-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.302-309
    • /
    • 2003
  • Hybrid-Trefftz plate bending elements are known to be robust and free of shear locking in the thin limit because of Internal displacements fields and linked boundary displacements. Also, their finite element approximation is very simple regardless to boundary shape since all element matrices can be calculated using only boundary integrals. In this study, new hybrid-Trefftz variational formulation based on the total potential energy principle of internal displacements and displacement consistency conditions at the boundary is derived. And flat shell elements are derived by combining hybrid-Trefftz bending stiffness and plane stress stiffness with drilling dofs.

Strip Shape Analysis and Curvature Prediction of Front End Downward Bending in Plate Rolling by Finite Element Method (후판 압연중 발생하는 판의 하향벤딩시 선단부 판 형상의 고찰 및 곡률예측)

  • 이중형;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.110-114
    • /
    • 1997
  • The major object in this report is the curvature prediction of front end downward bending in plate rolling. Because of relations front end shape and curvature in plate, many simulations were carried out to obtain empirical model. Simulation conditions, for example the position and the size of bottom stripper or roller table etc., were limited to the POSCO conditions. Though the result in this report can be applied to the special case, the tendency of this result is similar to the many cases. So the empirical model equation can be improved or expanded to many simulation conditions.

  • PDF

Design of a Hinge Bracket Forming Process Using Thick Plate (후판을 이용한 힌지 브래킷 성형 공정 설계)

  • Jang, M.G.;Choi, H.S.;Lee, H.K.;Shin, Y.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.227-234
    • /
    • 2016
  • In the transportation between countries using container, too many empty containers must be transported due to the transportation unbalance. For transportation efficiency, therefore, foldable containers are being developed. Hinge brackets are important parts of foldable containers because great force is applied on the hinges during loading onto and unloading from ships. In this study, the hinge bracket for a foldable container is designed to be made using thick plate or bulk materials to endure the heavy loads. The forming process for the hinge bracket using a thick plate is designed via numerical analysis. First of all, the shape of bracket is designed for the better formability. Bending and successive side wall thickening processes are employed for the forming of the hinge bracket. Maximum thickening that can be achieved in a single stage of forming without a folding defect is determined and three stage of thickening processes are designed.

Rotation-Free Plate Element Based on the Natural Element Method (자연요소법에 기초한 회전자유도가 없는 평판요소)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Lee, Hong-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.513-518
    • /
    • 2007
  • A polygon-wise constant curvature natural element approximation is presented in this paper for the numerical implementation of the abstract Kirchhoff plate model. The strict continuity requirement in the displacement field is relaxed by converting the area integral of the curvatures into the boundary integral along the Voronoi boundary. Curvatures and bending moments are assumed to be constant within each Voronoi polygon, and the Voronoi-polygon-wise constant curvatures are derived in a selective manner for the sake of the imposition of essential boundary conditions. The numerical results illustrating the proposed method are also given.

  • PDF

Design and Fabrication of Linear-Type Ultrasonic Motor using Ll-B4 Vibration Mode (Ll-B4 진동모드를 이용한 linear-Type Ultrasonic Motor의 설계 및 시작)

  • 이종섭;임기조;정수현;정중기;임태빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.29-32
    • /
    • 1998
  • A plate-type ultrasonic linear motor using longitudinal and bending multi-vibration mode was designed and fabricated for card-forwarding device. The rotor consisted of piezoelectric ceramic plate and elastic materials. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6 m/s at 80 V in applied voltage. Starting torque was 1.4 mNm and maximum efficiency was 1.2 %.

  • PDF

Bending and free vibration analysis of a smart functionally graded plate

  • Bian, Z.G.;Ying, J.;Chen, W.Q.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.97-113
    • /
    • 2006
  • A simply supported hybrid plate consisting of top and bottom functionally graded elastic layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on the static bending and free vibration of the smart plate is discussed in the numerical examples.