• Title/Summary/Keyword: plastid membrane protein

Search Result 8, Processing Time 0.025 seconds

Effect of Benzyladenine on Plastid Development of Rape Cotyledons during Greening (녹화중 유채자엽의 색소체 발달에 미치는 Benzyladenine의 효과)

  • 진창덕
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.255-262
    • /
    • 1986
  • Developmental changes of chlorophyll-protein (CP)-complex and plastid membrane proteins during the greening of rape (Brassica napus L.) cotyledons were examined in order to investigate the effect of benzymladenine (BA) on plastid development. The formation of CP-complexes was slightly promoted by BA treatment in early greening stage, at 24 h and 48 h after illumination. However, BA inhibited the development of CP-complexes at 72 h after illumination. On the profiles of plastid membrane proteins with greening time, it was found that the 24 kd protein was increased and the 56 kd protein was decreased in both water control and BA-treated cotyledons. However, the above two traits were retarded under BA treatment, respectively. From the obtained result, plastid development of rape cotyledon during greening was partially affected by interaction between light and BA dependent on its physiological age.

  • PDF

Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening (녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과)

  • 홍정희;박흥덕
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 1995
  • Developmental changes of chlorophyll-protein complexes (CPs) and plastid membrane proteins in greening mung bean cotyledons and the effect of spermine therein were examined by SDS-polyacrylamide gel electrophoresis. The changes in the amounts of CPs became larger with the progress of greening and light-harvesting chlorophyll a/b protein (LHCP) was the main CP in the early greening stage up to f h. As the greening proceeded, chlorophyll-protein of the photosystem I (CPI) accumulated. Application of spermine were effective in accumulating CPs of the thylakoid membrane in the early phase of greening. In the profiles of the plastid membrane proteins, quantitative and qualitative changes were observed with the onset of greening up to 72 h. 56 kD protein of major intensity was observed in all greened chloroplasts and 24 kD protein increased remarkablly in both control and spermine-treated cotyledons. The thylakoids from spermine-treated cotyledons showed hither amounts of thylakoid proteins as compared to the controls. The results suggest that spermine may play a role in the regulation of plastid development and stabilizes the membrane function during greening.

  • PDF

Effects of Spermine on Changes in Chlorophyll-Protein Complexes and Plastic Membrane Proteins of Mung Bean Cotyledons during Greening (녹화중인 녹두 자엽의 엽록소-단백질 복합체 및 색소체막 단백질의 변화에 미치는 Spermine의 효과)

  • Hong, Hong,Jung-Hee;Park, Park,Hong-Duck
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.33-33
    • /
    • 1995
  • Developmental changes of chlorophyll-protein complexes (CPs) and plastid membrane proteins in greening mung bean cotyledons and the effect of spermine therein were examined by SDS-polyacrylamide gel electrophoresis. The changes in the amounts of CPs became larger with the progress of greening and light-harvesting chlorophyll a/b protein (LHCP) was the main CP in the early greening stage up to f h. As the greening proceeded, chlorophyll-protein of the photosystem I (CPI) accumulated. Application of spermine were effective in accumulating CPs of the thylakoid membrane in the early phase of greening. In the profiles of the plastid membrane proteins, quantitative and qualitative changes were observed with the onset of greening up to 72 h. 56 kD protein of major intensity was observed in all greened chloroplasts and 24 kD protein increased remarkablly in both control and spermine-treated cotyledons. The thylakoids from spermine-treated cotyledons showed hither amounts of thylakoid proteins as compared to the controls. The results suggest that spermine may play a role in the regulation of plastid development and stabilizes the membrane function during greening.

Formation of Dictyosome and Spherosome in Endosperm Cells of Panax ginseng during seed Formation (인삼(人蔘)(Panax ginseng)의 종자형성(種子形成)에 따른 배유세포(胚乳細胞)의 딕티오좀 및 Spherosome 형성)

  • Yu, Seong-Cheol;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.117-125
    • /
    • 1991
  • This study has been carried out to investigate the development of dictyosome, and roles of dictyosome about the formation of spherosome in the endosperm cell during seed formation of Panax ginseng with electron microscope. The result is as follows; In the endosperm cells of early stage during seed formation of Panax ginseng, plastid, mitochondria, endoplasmic reticulum, dictyosome and ribosomes are evenly distributed in cytoplasm. Electron lucent vesicles derived from dictyosome are observed in endosperm cells. Vesicles that contain low electron density are derived from forming face of dictyosome and releases into the cytosol. This vesicles formed multi vesicular body or fused with the plasma membrane. The spherical spherosomes are formed from dictyosome containing the lipid materials of even electron density and are gradually increased in size and number. Dictyosome is located in between vacuole and spherosome and it's cisternae form a semicircle and a circle. Some membrane of the protein body that accumulate the storage protein are originate from the spherical vacuole which interfused between vesicles and vacuoles derived from dictyosome.

  • PDF

Regulation of Chlorophyll-Protein Complex Formation and Assembly in Wheat Thylakoid Membrane

  • Guseinova, I.M.;Suleimanov, S.Y.;Aliev, J.A.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.496-501
    • /
    • 2001
  • Lincomycin, an inhibitor of plastid protein synthesis, was found to block the synthesis of apoprotein P700 with a molecular mass of 72 kDa and the assembly of the Chl a-protein of PS I. Synthesis of the polypeptides of 48, 43.5, and 32 kDa of the PS II complex is also suppressed. This process is accompanied by the disappearance of the PS Two reaction center Chl a at 683 nm, and of the PS One reaction center Chl a at 690, 696, and 705 nm on the fourth derivative of the absorption spectra at 77K. Lincomycin does not affect the synthesis of LHC subunits. It increases the content of the two main Chl forms of LHC at 648 nm (Chl b) and 676 nm (Chl a). The low-temperature fluorescence ratio F736/F685 is also increased. However, the effect of cycloheximide (an inhibitor of cytoplasmic protein synthesis) leads to the reduction of polypeptides of the light-harvesting Chl a/b-protein complex in the range of 29.5-22 kDa. Under these conditions, the relative amount of Chl b and the F736/ F685 fluorescence ratio decrease significantly. This is obviously the result of blocking the LHC I and LHC II synthesis. At the same time rifampicin and actinomycin D (inhibitors which block transcription in chloroplast and nuclear genome, respectively) inessentially affect the characteristics of these complexes.

  • PDF

Ultrastructural Changes during Germination of Ginseng Seeds (Panax ginseng) (인삼종자의 발아과정에 있어서 미세구조의 변화)

  • Kim, Woo-Kap;Park, Hong-Duok;Kim, Eun-Soo;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.9 no.1
    • /
    • pp.57-69
    • /
    • 1979
  • The ultrastructural changes of embryo and endosperm cells were observed during the green fruit with embryo about $250{\mu}$ long to germination. 1. In the embryo cells of green fruit with embryo about $250{\mu}$ long, mitochondrial cristae and plastid are undifferentiated and dictyosome are occasionally observed. There are electron-opaque globoids in the vacuole and a lot of spherosomes in the outer layer of smooth endoplasmic reticulum. Endosperm is filled with spherosomes and electron-opaque protein bodies surrounded by spherosomes, and due to these, other organelle are not observed. 2. In the embryo cells of seeds with red seed coat, mitochondrial cristae are well developed, electron-opaque globoids increased, and vacuoles are enlarged. In the endosperm, however, spherosomes increased, protein bodies are enlarged, and electron-opaque globoidal crystals are dispersed within them. 3. In the procambium and epicotyl cells of dehiscent seed, Golgi vacuoles and vesicles are well developed, and mitochondrial cristae are also well differentiated. Spherosomes are numerously present and radicle cells, peripheral cells of hypocotyl, and vacuoles of cotyledon are well differentiated. Endosperm is filled with spherosomes containing electron-opaque granules and protein bodies are surrounded by a single membrane. There are acid phosphatase around globoids and spherosomes. 4. At the time of seeding, spherosomes markedly increased in the outer layer of cotyledon and protein bodies are also observed. Cell organelles are differentiated and plastids containing starch are also present. 5. In the outer $2{\sim}3$ layers of cotyledons, radicle cells, and peripheral cells of hypocotyl during post-seeding to germination, spherosomes and plastids with starch increased, and mitochondria and microbodies are also found around the nucleus of embryo cells. With approaching, the germination stage, in the endosperm contacting with embryo, vacuoles are well differentiated but spherosomes decreased. There increased electron-opaque materials within vacuoles. In other endosperm, with the decrease of spherosome, mitochondria increased and electro n-opaque globular bodies are formed and gradually increased. The outer layer of protein bodies are reduced while electron-transparent portions are enlarged and fused together to occupy the outer layer where small particles are formed. 6. In the endosperm of germination stage, spherosomes decreased while protein bodies, are fused together to form 2 or 3 within a cell.

  • PDF

Targeting Analysis of Lumenal Proteins of Chloroplast of Wheat using Proteomic Techniques

  • Kamal, Abu Hena Mostafa;Kim, Da-Eun;Oh, Myoung-Won;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Uozumi, Nobuyuki;Choi, Jong-Soon;Cho, Kun;Woo, Sun-Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.14-14
    • /
    • 2010
  • Plastid proteomics are essential organelles present in virtually all cells in plants and green algae. Plastids are responsible for the synthesis and storage of key molecules required for the basic architecture and functions of plant cells. The proteome of plastid, and in particular of chloroplast, have received significant amounts of attention in recent years. Various fractionation and mass spectrometry (MS) techniques have been applied to catalogue the chloroplast proteome and its sub-organelles compartments. To better understanding the function of the lumenal sub-organelles within the thylakoid network, we have carried out a systematical analysis and identification of the lumenal proteins in the thylakoid of wheat by using Tricine-SDS-PAGE, and LTQ-ESI-FTICR mass spectrometry followed by SWISS-PROT database searching. We isolation and fractionation these membrane from fully developed wheat leaves using a combination of differential and gradient centrifugation couple to high speed ultra-centrifuge. After collecting all proteins to eliminate possible same proteins, we estimated that there are 407 different proteins including chloroplast, chloroplast stroma, lumenal, and thylakoid membrane proteins excluding 20 proteins, which were identified in nucleus, cytoplasm and mitochondria. A combination of these three programs (PSORT, TargetP, TMHMM, and TOPPRED) was found to provide a useful tool for evaluating chloroplast localization, transit peptide, transmembranes, and also could reveal possible alternative processing sites and dual targeting. Finally, we report also sub-cellular location specific protein interaction network using Cytoscape software, which provides further insight into the biochemical pathways of photosynthesis. The present work helps understanding photosynthesis process in wheat at the molecular level and provides a new overview of the biochemical machinery of the thylakoid in wheat.

  • PDF

Molecular Modification of Perilla Lipid Composition

  • Hwang, Young-Soo;Kim, Kyung-Hwan;Hwang, Seon-Kap;Lee, Sun-Hwa;Lee, Seong-Kon;Kim, Jung-Bong;Park, Sang-Bong;Tom Okita;Kim, Donghern
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.20-30
    • /
    • 1999
  • In order to modify lipid production of Perilla qualitatively as well as quantitatively by genetic engineering, genes involved in carbon metabolism were isolated and characterized. These include acyl-ACP thioesterases from Perilla frutescens and Iris sp., four different $\beta$-ketoacyl- ACP synthases from Perilla frutescens, and two $\Delta$15 a-cyl-ACP desaturases(Pffad7, pffad3). Δ15 acyl-ACP desa turase (Δ15-DES) is responsible for the conversion of linoleic acid (18:2) to $\alpha$-linolenic acid (ALA, 18:3). pffad 3 encodes Δ15 acyl-desaturase which is localized in ER membrane. On the other hand, Pffad7 encodes a 50 kD plastid protein (438 residues), which showed highest sequence similarity to Sesamum indicum fad7 protein. Northern blot analysis revealed that the Pffad7 is highly expressed in leaves but not in roots and seeds. And Pffad3 is expressed throughout the seed developmental stage except very early and fully mature stage. We constructed Pffad7 gene under 355 promoter and Pffad3 gene under seed specific vicillin promoter. Using Pffad7 construct, Perilla, an oil seed crop in Korea, was transformed by Agrobacterium leaf disc method. $\alpha$-linolenic acid contents increased in leaves but decreased in seeds of transgenic Perilla. Currently, we are transforming Perilla with Pffad3 construct to change Perilla seed oil composition. We isolated three ADP-glucose pyrophosphorylase (AGP) genes from Perilla immature seed specific cDNA library. Nucleotide sequence analysis showed that two of three AGP (Psagpl, Psagp2) genes encode AGP small subunit polypeptides and the remaining (Plagp) encodes an AGP large subunit. PSAGPs, AGP small subunit peptide, form active heterotetramers with potato AGP large subunit in E. coli expressing plant AGP genes.

  • PDF