• Title/Summary/Keyword: plastic strain ratio

Search Result 244, Processing Time 0.026 seconds

Microscopic Investigation of the Strain Rate Hardening for Metals (금속재료 변형률속도 경화의 미시적 관찰)

  • Yoon, J.H.;Huh, H.;Huh, M.Y.;Kang, H.G.;Park, C.G.;Suh, J.H.;Kang, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.352-355
    • /
    • 2007
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2s^{-1}$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimen is investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which contain grain size, grain shape, aspect ratio and dislocation substructure.

  • PDF

Finite Element Analysis of Fatigue Crack Closure under Plane Strain State (평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가)

  • Lee, Hak-Joo;Song, Ji-Ho;Kang, Jae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

A study on strain specification and safety degree of connection joints of steel structural member (강구조부재 연결부의 변형특성 및 안전도에 관한 연구)

  • 김경진;김두환
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.4
    • /
    • pp.5-10
    • /
    • 1986
  • On SWS 41 Plates jointed by the F11T M 20 high strength bolts the study on stress behavior and safety degree until rupture in static tensile tests were performed. By these results, in case of no clamping force stress concentration was extremed for strain of about 10% higher ratio. Elastic strain occurred to change of test specimens depth by the load and plastic strain occurred to local minute sleep after elastic strain. compared shear stress with tension stress from the fracture load it was showned lower values than the maximum shear stress theory and stress strain energy theory.

  • PDF

Texture of Frictionally Rolled AA 1050 Aluminum alloy (마찰 압연한 AA 1050 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.328-329
    • /
    • 2007
  • A study on the texture and the formability after frictional rolled and subsequent heat-treated AA 1050 aluminum alloy sheets have been carried out. The specimens after the frictional rolling showed a very fine grain size, a decrease of <100>//ND, and an increase of <111>//ND textures. The change of plastic strain ratios has been investigated and it was found that they were higher than those of the initial Al sheet.

  • PDF

A study of plastic plateau disappearance in stress-strain curve of annealed polypropylene films during stretching

  • Lei, Caihong;Wu, Shuqiu;Xu, Ruijie;Xu, Yunqi;Peng, Xinlong
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • The changes of plastic plateau in the stress-strain curves of annealed polypropylene (PP) films during stretching under room temperature were followed and the corresponding melting properties and microstructure were characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). It was found that during stretching the plastic plateau disappeared progressively with the increase of drawing ratio. At the same time, the endotherm plateau in DSC curves also disappeared progressively. The presence of the plastic plateau was attributed to the stretching of unstable crystalline part which was formed by tie chains around initial row-nucleated lamellae structure during annealing. During stretching, the unstable part was stretched and converted to bridges connecting separated lamellae. There was direct relationship between the disappearance of plastic plateau and pore formation.

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet (무윤활 압연한 알루미늄 합금의 집합조직과 성형성)

  • Akramov, Saidmurod;Kim, In-Soo
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

An elasto-plastic solution for infinite solid containing a spherical precipitate under hydrostatic pressure (구형석출물을 갖는 무한 고체에 전수압이 가해지는 경우에 대한 탄소성해)

  • ;;Earmme, Youn Young
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.122-130
    • /
    • 1981
  • Equation of equilibrium is derived and solved for an infinite isotropic solid under applied hydrostatic stress which is uniform at large distance, and disturbed by a spherical precipitate which has isotropoc elastic constants dirrerent form those of the matrix. A linear strain hardening behavior of the matrix is assumed, and an elasto-plastic sloution is obtained. The difference of the total strain energy stored inthe infinite solid with and without a precipitate is computed, and compared with that for purely elastic case. Finally the effect of the ratio of the bulk modulus of the precipitate to that of the matrix and the effct of linear strain hardening rate on the plastic zone size and the energy difference are discussed.

Experimental investigation of the stress-strain behavior of FRP confined concrete prisms

  • Hosseinpour, F.;Abbasnia, R.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.177-192
    • /
    • 2014
  • One of the main applications of FRP composites is confining concrete columns. Hence identifying the cyclic and monotonic stress-strain behavior of confined concrete columns and the parameters influencing this behavior is inevitable. Two significant parameters affecting the stress-strain behavior are aspect ratio and corner radius. The present study aims to scrutinize the effects of corner radius and aspect ratio on different aspects of stress-strain behavior of FRP confined concrete specimens (rectangular, square and circular). Hence 44 FRP confined concrete specimens were tested and the results of the tests were investigated. The findings indicated that for specimens with different aspect ratios, the relationship between the ultimate stress and the corner radius is linear and the variations of the ultimate stress versus the corner radius decreases as a result of an increase in aspect ratio. It was also observed that increase of the corner radius results in increase of the compressive strength and ultimate axial strain and increase of the aspect ratio causes an increase of the ultimate axial strain but a decrease of the compressive strength. Investigation of the ultimate condition showed that the FRP hoop rupture strain is smaller in comparison with the one obtained from the tensile coupon test and also the ultimate axial strain and confined concrete strength are smaller when a prism is under monotonic loading. Other important results of this study were, an increase in the axial strain during the early stage of unloading paths and increase of the confining effect of FRP jacket with the increase and decrease of the corner radius and aspect ratio respectively, a decrease in the slope of reloading branches with cycle repetitions and the independence of this trend from the variations of the aspect ratio and corner radius and also quadric relationship between the number of each cycle and the plastic strain of the same cycle as well as the independence of this relationship from the aspect ratio and corner radius.

Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles (비대칭 사다리꼴 단면 선재의 다단 인발 공정설계)

  • Ji, S.I.;Lee, K.H.;Hong, L.S.;Jung, J.Y.;Kim, J.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.