• Title/Summary/Keyword: plastic strain ratio

Search Result 244, Processing Time 0.028 seconds

Texture Control in Aluminum Alloy Sheets (알루미늄 합금판재의 집합조직 제어)

  • 김근환;강형구;최창희;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.198-201
    • /
    • 1997
  • Aluminum alloy sheets are considered as one of the high potential substitutes for steel sheets considering weight reduction of automobiles. However, aluminum alloy sheets have drawbacks in higher prices and inferior formability compared to steel sheets. In order to achieve good deep drawability, it is imperative to obtain well developed {111} texture which gives rise to higher plastic strain ratio. It is difficult to obtain this texture from conventional rolling and annealing processes. Therefore, an unconventional rolling process which enhances shear deformation has been experimentally studied to obtain the well developed {111} texture, which in turn gives rise to a substantial increase in plastic strain ratio.

  • PDF

Evaluation of Plastic Rotational Capacity Based on Material Characteristics in Reinforced Concrete Flexural Members (재료 특성에 기반한 철근콘크리트 휨부재의 소성회전능력 산정)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • Although a critical section reaches its flexural strength in reinforced concrete structures, the structure does not always fail because moment redistribution occurs during the formation of plastic hinges. Inelastic deformation in a plastic hinge region results in plastic rotation. A plastic hinge mainly depends on material characteristics. In this study, a plastic hinge length and plastic rotation are evaluated using the flexural curvature distribution which is derived from the material models given in Eurocode 2. The influence on plastic capacity the limit values of the material model used, that is, ultimate strain of concrete and steel and hardening ratio of steel(k), are investigated. As results, it is appeared that a large ultimate strain of concrete and steel is resulting in large plastic capactiy and also as a hardening ratio of steel increases, the plastic rotation increases significantly. Therefore, a careful attention would be paid to determine the limit values of material characteristics in the RC structures.

Analytical Study on Characteristics of von Mises Yield Criterion under Plane Strain Condition (평면변형률상태에서의 von Mises 항복기준의 특성에 관한 이론적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6391-6396
    • /
    • 2015
  • In order to investigate characteristics of the von Mises yield criterion under 2 dimensional stress condition, two cases of plane strain were studied. One of which was for zero elastic strain and the other was for zero plastic strain increment. Yield functions for the plane strain condition for zero elastic strain and for the plane stress condition were represented as ellipse and the two yield functions were compared by ratios of major axis, minor axis and eccentricity and it was seen that the ratio of minor axis was the same between the two cases and the ratios of major axis and eccentricity were functions of Poisson's ratio. Region of elastic behavior obtained from considering plane strain condition of zero elastic strain increases as the Poisson's ratio increases. Yield function for plane strain obtained from considering zero plastic increment and associate flow rule was displayed as straight line and the region of elastic behavior was greater than that for the case of plane stress.

Mechanical properties and formability of asymmetrically rolled aluminum alloy sheet (무윤활 압연한 알루미늄 판재의 기계적 특성과 성형성)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.429-431
    • /
    • 2009
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND // <111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study, The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND // <111> texture components through asymmetric rolling in Al sheet.

  • PDF

Texture of Asymmetric Rolled Aluminum sheets (알루미늄 비대칭압연 집합조직)

  • Akramov, S.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.477-479
    • /
    • 2008
  • Drawability and other mechanical properties of sheet metals are strongly dependent on their crystallographic orientations. In this paper the formability of the AA 5052 Al alloy sheets was investigated after asymmetric rolling and subsequent heat treatment. In most cases, after asymmetric rolling specimens showed a fine grain size and subsequent heat treated specimens showed that the ND//<111> texture component were observed. The anisotropy of formability is often described by the plastic strain ratios (r-value) as a function of the angle to the rolling direction in sheet metal. For a good formability, a high r-value is required in sheet metals. In the asymmetry rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios have been investigated in this study. The plastic strain ratios of the asymmetry rolled and subsequent heat treated AA 5052 Al alloy sheets were higher than those of the original Al sheets. These could be related to the formation of ND//<111> texture components through asymmetric rolling in Al sheet.

  • PDF

A Yield Function for Sintered Porous Metals (소결분말금속의 항복함수)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1115-1122
    • /
    • 1993
  • Several yield criteria for porous materials are compared with each other, defining the apparent yield stress as the yield stress of the porous material in simple compression. It was found that the plastic Poisson's ratio is the parameter needed to define the yield criterion, rather than the relative density. The plastic Poisson's ratio is regarded as a material characteristic that is obtained from a simple compression test. A new form of yield criterion was suggested, and it was applied to hydrostatic compression as well as uniaxial strain compression of sintered Al-2024 powder. The crossover point in the mean stress vs volume change curves of the processes was predicted. It is presented that the flow stress of the fully densed material can be obtained from that of the porous material using relations obtained from the yield criterion.

A STREE-STRAIN THEORY FOR COMPACTED ROCKFILL (다짐된 사약재료의 응력-변형 이론)

  • 이영희
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.77-96
    • /
    • 1987
  • Based on observation emerged from the undrained tests and the anisotropic consolidation tests, an incremental stress-strain theory for rockfill is proposed in a manner similar to that developed ky Cambridge Group for normally consolidated soils; the volumetric strain due to stress increment is the same as the increment due to an undrained component followed by an increment along the constant stress ratio path. The strains in drained tests are predicted from those in the undrained tests and in the anisotropic consolidation tests. An expression for the undrained stress path is derived based on the bilinear relationship between the pore pressure developed and the stress ratio observed during untrained tests. Good agreement is found between the calculated and measured strains. This trend in behaviour would be helpful in establishing a stress.strain model for rockfill using the elasto-plastic behaviour with the concept of plastic potentials and flow rules.

  • PDF

Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model (직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Texture and Plastic deformation of the Severe Ecaped and Heatreated AA 1050 Aluminum Alloy Sheet (심한 전단변형(ECAP)과 열처리한 알루미늄 AA 1050 합금 판재의 소성변형비와 집합조직)

  • Akramov Saidmurod;Lee M. K.;Kim I.;Park B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • A study on the microstructure and the texture of the samples after ECAP and subsequent heat treatment has been carried out. The specimens after ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has been used as a parameter that expresses the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions has been investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment.

  • PDF

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.