• 제목/요약/키워드: plastic strain range

검색결과 189건 처리시간 0.033초

유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구 (Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method)

  • 박일민
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.445-454
    • /
    • 2001
  • 본 연구는 전단변형형 강가새 골조의 탄소성 거동에 관한 연구로서 강가새 골조의 종류로는 X형 및 K형이며, 각 종류별 주 변수는 세장비로 되어있다. 재료의 응력도-변형도 관계는 변형경화현상을 고려한 Tri-linear형 모델을 사용하였다. 또한, 하중-변위 관계는 유한차분법을 이용하여 해석하였다. 하중-변위관계에 관하여 탄성구배 및 최대하중에 관하여 해석결과치와 실험결과치를 비교하였고, 그 비는 약 10%내외의 오차를 보임에 따라 본 논문에서 제안한 해석법은 합리적임을 나타내었다.

  • PDF

티탄계 초소성합금 SP-700의 저사이클 피로수명곡선의 절곡현상에 대하여 (A Study on the Knee Point of Low-cycle Fatigue Life in High Formability Titanium Alloy SP-700)

  • 김민건;;지정근
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.129-135
    • /
    • 1997
  • Previous studies has shown that the curve of low-cycle fatigue life was not expressed with the single line subjected to Manson-Coffin's law type and bent to short life in low ${\Delta}{\varepsilon}_p$ region. The main cause of this phenomenon has been considered that the localization of plastic strain in the crack initiation process fosters the crack initiation. In this study, the low-cycle fatigue life was investigated for each specimens omitted crack initiation process and it was found that fatigue life curve in log(${\Delta}{\varepsilon}_p$)-log($N_f$)was bent in low ${\Delta}{\varepsilon}_p$ region as ever. Therefore, the main cause of appearance of knee point in fatigue life curve is not found in the crack initiation process but in the crack propagation process. In the crack propagation process, the localization of the plastic strain in the vicinity of crack tip and the influence of test environment on the crack propagation rate were observed and these inclinations were more remarkable in low ${\Delta}{\varepsilon}_p$ region. Hence, it was concluded that these two phenomena in the crack propagation process were proved to the main cause which accelerates the crack propagation in low ${\Delta}{\varepsilon}_p$ region and bent the fatigue life curve in result.

  • PDF

Experimental study and calculation of laterally-prestressed confined concrete columns

  • Nematzadeh, Mahdi;Fazli, Saeed;Hajirasouliha, Iman
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.517-527
    • /
    • 2017
  • In this paper, the effect of active confinement on the compressive behaviour of circular steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns is investigated. In STCC columns the axial load is only applied to the concrete core, while in CFST columns the load is carried by the whole composite section. A new method is introduced to apply confining pressure on fresh concrete by laterally prestressing steel tubes. In order to achieve different prestressing levels, short-term and long-term pressures are applied to the fresh concrete. Three groups of STCC and CFST specimens (passive, S-active and L-active groups) are tested under axial loads. The results including stress-strain relationships of composite column components, secant modulus of elasticity, and volumetric strain are presented and discussed. Based on the elastic-plastic theory, the behaviour of the steel tube is also analyzed during elastic, yielding, and strain hardening stages. The results show that using the proposed prestressing method can considerably improve the compressive behaviour of both STCC and CFST specimens, while increasing the prestressing level has insignificant effects. By applying prestressing, the linear range in the stress-strain curve of STCC specimens increases by almost twice as much, while the improvement is negligible in CFST specimens.

DIC에 의한 복합재료 변형측정 (An Estimation of Deformation for Composites by DIC)

  • 권오헌;강지웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.78-84
    • /
    • 2014
  • The estimation of deformation and strain for the twill-weave carbon fiber reinforced plastic composite(CFRP) during the test with a digital image correlation system were implemented experimentally. The carbon fiber reinforced plastic composites have been developed as the edge technology materials. The plain, twill and satin weave types are commonly used for the CFRP composites. Thus, it is essential to find the deformation characteristics for those types of CFRP more easily. Especially the DIC method can express the visual strain distributions at the full range of the interested areas in the structures. In this study, the mechanical properties of twill-weave CFRP composite and the variation of strains in a full field of the specimen were estimated. The experiments were performed under a tensile loading and 3-point bending test with strain gages. Futhermore the DIC deformation results were estimated for the comparison. The results showed the deformation and strain contours visually well in all region of the interested areas and so usefulness for the safety control of the structures.

Rate-sensitive analysis of framed structures part II: implementation and application to steel and R/C frames

  • Fang, Q.;Izzuddin, B.A.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.239-256
    • /
    • 1997
  • The companion paper presents a new three-parameter model for the uniaxial rate-sensitive material response, which is based on a bilinear static stress-strain relationship with kinematic strain-hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel and concrete, and discusses the implementation of the new models within an incremental-iterative solution procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range. Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive analysis of steel and reinforced concrete structures.

TiC-Mo 고용체 단결정의 고온 압축변형 특성 (Deformation Property of TiC-Mo Solid Solution Single Crystal at High Temperature by Compression Test)

  • 신순기
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.625-631
    • /
    • 2014
  • To investigate the deformation properties of TiC-(5-20) mol% Mo solid solution single crystals at high temperature by compression testing, single crystals of various compositions were grown by the radio frequency floating zone technique and were deformed by compression at temperature from 1250K to 2270K at strain rates from $5.1{\times}10^{-5}$ to $5.9{\times}10^{-3}/s$. The plastic flow property of solid solution single crystals was found to be clearly different among a three-temperature range (low, intermediate and high temperature ranges) whose boundaries were dependent on the strain rate. From the observed property, we conclude that the deformation in the low temperature range is controlled by the Peierls mechanism, in the intermediate temperature range by the dynamic strain aging and in the high temperature range by the solute atmosphere dragging mechanism. The work softening tends to become less evident with an increasing experimental temperature and with a decreasing strain rate. The temperature and strain rate dependence of the critical resolved shear stress is the strongest in the high temperature range. The curves are divided into three parts with different slopes by a transition temperature. The critical resolved shear stress (${\tau}_{0.2}$) at the high temperature range showed that Mo content dependence of ${\tau}_{0.2}$ with temperature and the dependence is very marked at lower temperature. In the higher temperature range, ${\tau}_{0.2}$ increases monotonously with an increasing Mo content.

GND에 의한 소성 구배의 다결정 고체 모사에 대한 영향 (Effect of plastic gradient from GND on the simulation of polycrystalline solids)

  • 정상엽;한동석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.542-545
    • /
    • 2010
  • 재료의 마이크로 스케일 해석에서 결정의 geometrically necessary dislocation (GND) 효과에 의한 소성구배(plastic gradient)를 고려하는 것은 재료의 소성 거동을 분석하는데 영향을 미친다. 본 연구에서는 먼거리(long range)에서 전위(dislocation)의 영향을 고려하는 GND의 효과를 적용하여 소성 구배의 영향을 받는 다결정(polycrystal) 고체의 거동을 유한요소해석을 이용하여 살펴보았다. 재료의 거동을 분석하기 위해 탄성(elastic)과 소성(plastic) 변형에 먼 거리 변형률(long range strain)을 고려한 항(term)이 포함된 변형 구배(deformation gradient)의 multiplicative decomposition 모델을 사용하였다. 먼 거리 변형률에 의한 영향을 고려하기 위해 구배 경화 계수(gradient hardness coefficient)와 먼 거리 변형률 길이에 대한 재료변수(parameter)가 사용되었다. 각각의 계수들이 다결정 고체의 거동에 미치는 영향을 확인하기 위해 두 변수의 적용에 따른 다결정 고체의 거동을 분석하였다. 다결정 재료의 GND 효과에 의한 소성 구배 효과를 고려해서, 고려하지 않은 경우와 비교하여 발생하는 경화(hardening)의 차이를 분석함으로서 GND에 의한 다결정 고체 거동의 영향을 확인하였다.

  • PDF

304 스테인레스강의 고온소성변형특성에 미치는 정적연화 효과 (Effect of Static Softening on Hot Plastic Deformation Behaviour for 304Stainless Steel)

  • 조상현;김유승;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.185-188
    • /
    • 1997
  • Static restoration during hot interrupted deformation of 304 stainless steel was studied in the temperature range from 900 to 1100$^{\circ}C$ under various strain rate of 0.05∼ 5/sec and pass strain of 1/4∼3 times peak strain. The static restoration was dependent on the pass strain, deformation temperature and strain rate. Fractional softening(FS) values increased with increasing strain rate, deformation temperature and pass strain. Recystallization kinetics was well explained by the Avrami equation and the time for 50% recrystallization was evaluated using equation of t0.5=2.01${\times}$10-10$\varepsilon$-.156$\varepsilon$ -0.81Dexp(196.66/RT)

  • PDF

매립지반의 액상화 해석 (Liquefaction Analysis at Man-Made Island)

  • 김용성;이달원;오카 후사오;고다카 다케시
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.187-190
    • /
    • 2003
  • In order to apply a cyclic elasto-plastic and a viscoelastic-viscoplastic constitutive model to actual multi-layered ground conditions during large earthquake, numerica simulations were performed by a liquefaction analysis in the present study. From the liquefaction analysis, it was verified that the models can give a good description of the damping characteristics and liquefaction phenomena of ground accurately during large event which induces plastic deformation in large strain range.

  • PDF

12% 크롬 로터강의 피로수명 예측 모델에 관한 연구 (Fatigue Life Prediction Model of 12% Cr Rotor Steel)

  • 장윤석;오세욱;오세규
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1349-1355
    • /
    • 1990
  • By examining the fatigue deformation properties of 12% Cr rotor steel which has been proved to have high fatigue and creep rupture strength around 600deg. C, authors reviewed major fatigue life prediction models such as Manson, Langer and Morrow equations, and following results were obtained. (1) A simple life prediction model for 12% Cr rotor steel was obtained as follows : DELTA..epsilon.$_{t}$ =2.18+.sigma.$_{u}$ /E+ $N^{-0.065}$+ $e^{0.6}$ $N^{-0.025}$ This equation shows that fatigue life, N, can be easily determined when total strain range, DELTA..epsilon.$_{t}$ and ultimate tensile strength, .sigma.$_{u}$ are known by simple tension test on the given test conditions. (2) Life prediction equation with equivalent maximum stress, DELTA..sigma./2, corresponding maximum strain in one cycle at room temperature is as follows: DELTA..sigma./w=-7.01logN+96.69+96.69