• Title/Summary/Keyword: plastic shear strain

Search Result 275, Processing Time 0.032 seconds

Analysis of Adiabatic Shearbands via High Resolution Scheme (고분해능 스킴을 이용한 단열 전단띠 해석)

  • Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.396-399
    • /
    • 2001
  • Development of adiabatic shear bands in thermoviscoplastic materials is analyzed via high resolution scheme. Presented here are our initial results, which are for one dimensional elasto-viscoplastic materials. As the mesh-sizes are getting small, the convergence result of plastic strain rate is obtained using elasto-viscoplastic materials. The further study cases will be reported at the presentation in the framework of the one and the two dimensional shearbanding, respectively. They will be compared with finite element solutions, and the advantage of the scheme will be discussed.

  • PDF

Nonlinear Analysis of RC Structures using Assumed Strain RM Shell Element

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Nonlinear analysis of reinforced concrete structures is carried out by using Reissner-Mindlin (RM) shell finite element (FE). The brittle inelastic characteristic of concrete material is represented by using the elasto-plastic fracture (EPF) material model with the relevant material models such as cracking criteria, shear transfer model and tension stiffening model. In particular, assumed strains are introduced in the formulation of the present shell FE in order to avoid element deficiencies inherited in the standard RM shell FE. The arc-length control method is used to trace the full load-displacement path of reinforced concrete structures. Finally, four benchmark tests are carried out and numerical results are provided as future reference solutions produced by RM shell element with assumed strains.

Computer Simulation of Hemispherical Sheet Forming Process Using Crystal Plasticity (결정 소성학을 이용한 반구 박판 성형공정의 전산모사)

  • Shim, J.G.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.276-281
    • /
    • 2007
  • The hardening and the constitutive equation based on the crystal plasticity are introduced for the numerical simulation of hemispherical sheet metal forming. For calculating the deformation and the stress of the crystal, Taylor's model of the crystalline aggregate is employed. The hardening is evaluated by using the Taylor factor, the critical resolved shear stress of the slip system, and the sum of the crystallographic shears. During the hemispherical forming process, the texture of the sheet metal is evolved by the plastic deformation of the crystal. By calculating the Euler angles of the BCC sheet, the texture evolution of the sheet is traced during the forming process. Deformation texture of the BCC sheet is represented by using the pole figure. The comparison of the strain distribution and punch force in the hemispherical forming process between the prediction using crystal plasticity and experiment shows the verification of the crystal plasticity-based formulation and the accuracy of the hardening and constitutive equation obtained from the crystal plasticity.

Path-dependent three-dimensional constitutive laws of reinforced concrete -formulation and experimental verifications-

  • Maekawa, Koichi;Irawan, Paulus;Okamura, Hajime
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.743-754
    • /
    • 1997
  • A three-dimensional constitutive modeling for reinforced concrete is presented for finite element nonlinear analysis of reinforced concrete. The targets of interest to the authors are columns confined by lateral steel hoops, RC thin shells subjected to combined in-plane and out-of-plane actions and massive structures of three-dimensional (3D) extent in shear. The elasto-plastic and continuum fracture law is applied to pre-cracked solid concrete. For post cracking formulation, fixed multi-directional smeared crack model is adopted for RC domains of 3D geometry subjected to monotonic and reversed cyclic actions. The authors propose a new scheme of decomposing stress strain fields into sub-planes on which 2D constitutive laws can be applied. The proposed model for 3D reinforced concrete is experimentally verified in both member and structural levels under cyclic actions.

Hertzian 이동하중을 받는 피복된 재료의 탄소성 거동에 관한 유한요소해석

  • 김영종;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.596-602
    • /
    • 1995
  • In this paper, the rolling-sliding contact problem of a layered semi-infinite solid compressed by a rigid surface is solved by finite element method based on the elasto-plastic theory. The purpose of this paper is to present the standard that is needed the later design. For this analysis, the principal parameters are layer thickness. Young's modulus ratio of layer and substrate and friction coefficient. In particular, this paper is interested in effect that layer thickness have influence upon displacement and shear and tensile stress at interface. For the layered material, the layer and the substrate behave elastic and linear-strain hardening respectively. For law friction, a relatively thin layer reduce the undesired maximum tensial stress but, for high friction, act contrary to the case of low friction.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

The Analysis of Soil Behaviour by Double Surface Work-hardening Constitutive Model (복합항복면 일-경화구성 모델을 이용한 지반거동해석)

  • Youn, Il-Ro;Oh, Se-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • Decomposed granite soils are in a wide range of conditions depending on the degrees of weathering. This paper is intended to examine laboratory tests such as consolidation tests and conventional triaxial compression tests conducted in order to find out the mechanical properties of Cheongju granite soil. Along with the foregoing, the results of basic physical tests conducted in order to grasp the physical properties of Cheongju granite soil were described and based on the results, methods to calculate the mechanical parameters of numerical approaches using Lade's double surface work-hardening constitutive model were examined. Finally, it is intended to explain the stress properties of Cheongju granite soil used as a geotechnical material based on its shear behavior and critical state concept using the results of isotropic consolidation tests and triaxial compression tests. As a conclusion, it can be seen that in the relationship between confining stress and maximum deviator stress, the slope is maintained at a constant value of 2.95. In the drained CTC test, maximum deviator stress generally existed in a range of axial strain of 6~8% and larger dilatancy phenomena appeared when confining stress was smaller. Finally, based on the results of the CTC tests on Cheongju granite soil, although axial strain, deviator stress and pore water pressure showed mechanical properties similar to those of overconsolidated soil, Cheongju granite soil showed behavior similar to that of normally consolidated soil in terms of volumetric strain.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

The Structural Analysis of Wedge Joint in Composite Motor Case (복합재 연소관의 쐐기형 체결부 구조 해석)

  • 황태경;도영대;김유준
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.64-73
    • /
    • 2000
  • The joint parts was composed of inner AL(aluminum) ring, FRP wedge and motor case which was manufactured by filament wound method. Where the motor case consists of helical and hoop layer. The finite element analysis was performed for the design variable of joint parts to improve the performance of motor case. Where the adhesive layer was modeled to elasto-perfect plastic material and the contact condition of AL ring and wedge was modeled by using the contact surface element of ABAQUS. And the sliding distance of AL ring and the hoop strain of composite case were compared to hydro-static test results to verify the accuracy of analysis results. When wedge and AL ring was perfect bonding, though the hoop strain of joint part was reduced, the maximum shear stress was occurred at the adhesive layer. Thus the adhesive layer had failed due to the high shear stress before the failure was occurred at the case. And as another design method, when wedge and AL ring was contact condition, the shear stress on adhesive layer was decreased. But the hoop stress of joint part increased due to the sliding behavior of AL ring. Finally, the fail was occurred at the composite case of joint part. The improved joint method reinforced by hoop layer to the joint parts under contact condition for wedge and Al. ring reduced the joint part's hoop strain by constraint the sliding behavior of AL ring.

  • PDF

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.