• Title/Summary/Keyword: plastic injection mold manufacturing

Search Result 99, Processing Time 0.026 seconds

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

A study on passenger air bag housing by injection molding analysis (자동차 승객용 에어백 하우징의 사출성형 해석 연구)

  • Choi, Doo-Yeol;Park, Jae-Il;Hong, Seok-Moo;Choi, Kye-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • Plastic material has been applied to many automobile parts with the automotive lightweighting trend. In this study, a passenger air bag(PAB) housing which is produced by steel material in the present were molded using a plastics material. Before design and making of a mold for the PAB housing molding, it was carried out injection molding analysis. By analyzing the deformation results, the correction dimension for mold designing was determined. The design and manufacturing the mold applied the correction dimension were conducted. It was performed actual injection molding. The warpage value of the PAB housing was similar to the warpage of the injection molding analysis.

  • PDF

A study on CIM construction for the plastic fan design manufacturing (플라스택 팬 설계, 제조의 CIM 구축을 위한 연구)

  • Choi, Yang-Ho;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1470-1479
    • /
    • 1997
  • In this study, the plastic fan with high efficiency and low noise was designed and the capacity of the wind and the wind pressure were analysed and verified by CAE. After designing the metallic mold using the metallic mold design data, and the the metallic mold design was reformed by analysing the process of the material stream and injection filling by CAE. Also the metallic mold cutting data were formed using the metallic mold design data. These cutting data was used to produce the fan electrode by a machining center and then this electrode were used to manufacture the metallic mold by cutting the fan cavity by an electrical spark machine. The purpose of this study is to find out the sub-optimal condition on the productivity and improvement in quality of the plastic fan by integrating a series of this process with a computer.

The effect of Gate type on Injection Molding of Automotive Bumper (자동차 범퍼금형에서의 게이트 형상이 제품 성형에 미치는 영향)

  • Hwang S.H.;Ji S.D.;Kim M.K.;Kwon Y.S.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1724-1727
    • /
    • 2005
  • Injection molding process is one of the processes that can mold plastic product as low cost. However, manufacturing process of automobile bumper mold has lots of trial and error. Especially, desiging of a huge mold such as bumper mold is needed to establish a design standard for runner system. In this study, CAE was conducted to observe the variation of melt-flow by changing runner and gate type in automobile bumper mold as preceding study for a standard design of runner system.

  • PDF

The Effects of the GAIM Process Variables on the Penetration-Length Variations in a Unary Branch Type Runner Mold (편측분기형 러너 금형에서 가스사출 성형변수가 성형품의 중공부 길이 변화에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.137-142
    • /
    • 2005
  • Gas-Assisted Injection Molding(GAIM) is an innovative technology for producing plastic parts and has been received extensive attention in the plastic manufacturing industries. But, due to gas-polymer interacting during the gas injection phase, the process has significantly different characteristics from conventional injection molding and, therefore, the control of the process requires much technical knowledge in processing and materials. The experiment was performed about variations of gas-penetration length that is affected by filling imbalance resulting from the structure of runner. The Taguchi method was used for the design of experiment. The most effective factors for the gas-penetration length were the shot size and mold temperature. The most effective factors for the difference of the gas-penetration length were the melt temperature and shot size. This study also discussed the filling imbalance phenomenon in a unary branch runner type mold that has geometrically balanced runner.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Injection Moulding of Polyetherimide Axi-Symmetric Elements (PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구)

  • 하영욱;정태형;이범재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

A study on reduction of clamping force for plastic back cover of large TV (대형 TV의 플라스틱 후면 커버 성형시의 형체력 절감 방안 연구)

  • Song, Jae-Choon;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2019
  • A large plastic molding requires an injection molding with a large clamping force. However, it could not be prepared in the manufacturing at any time. In order to solve the problem, the injection molding analysis study was conducted on the back cover of 55 inch LED TV. The study compared the case of applying the existing flow system such as hot runner, the improvement of the hot runner lay-out and the precise control of the gate operation time, From the results of using the improved flow system, it was found that the welding and the clamping force were considerably improved as compared with before the improvement. In particular, the clamping force was reduced by 50% compared with before the improvement.

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.