• 제목/요약/키워드: plastic films

검색결과 297건 처리시간 0.023초

Electrical and Mechanical Properties of Indium-tin-oxide Films Deposited on Polymer Substrate Using Organic Buffer Layer

  • Han, Jeong-In;Lee, Chan-Jae;Rark, Sung-Kyu;Kim, Won-Keun;Kwak, Min-GI
    • Journal of Information Display
    • /
    • 제2권2호
    • /
    • pp.52-60
    • /
    • 2001
  • The electrical and mechanical properties in indium-tin-oxide films deposited on polymer substrate were examined. The materials of substrates were polyethersulfone (PES) which have gas barrier layer and anti-glare coating for plastic-based devices. The experiments were performed by rf-magnetron sputtering using a special instrument and buffer layers. Therefore, we obtained a very flat polymer substrate deposited ITO film and investigated the effects of buffer layers, and the instrument. Moreover, the influences of an oxygen partial pressure and post-deposition annealing in ITO films deposited on polymer substrates were clarified. X-ray diffraction observation, measurement of electrical property, and optical microscope observation were performed for the investigation of micro-structure and electro-mechanical properties, and they indicated that as-deposited ITO thin films are amorphous and become quasi-crystalline after adjusting oxygen partial pressure and thermal annealing above $180^{\circ}C$. As a result, we obtained 20-25 ${\Omega}/sq$ of ITO films with good transmittance (above 80 %) of oxygen contents with under 0.2 % and vacuum annealing. Furthermore, using organic buffer layer, we obtained ITO films which have a rather high electrical resistance (40-45 ${\Omega}/sq$) but have improved optical (more than 85 %) and mechanical characteristics compared to the counterparts. Consequently, a prototype reflective color plastic film LCD was fabricated using the PES polymer substrates to confirm whether the ITO films could be realized in accordance with our experimental results.

  • PDF

아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교 (A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique)

  • 윤석영;이윤복;김광호
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

Flexible Display i Low Temperature Processes for Plastic LCDs

  • Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권2호
    • /
    • pp.10-14
    • /
    • 2003
  • Flexible displays such as plastic-based liquid crystal displays (LCDs) and organic light-emitting diode displays (OLEDDs) have been researched and developed at KETI since 1997. The plastic film substrate is very weak to heat and pressure compared to glass substrate, that its fabrication process is limited to 110$^{\circ}C$ and low pressure. The ITO films were deposited on the bare plastic film substrate by rf-magnetron sputtering. Moreover, in order to maintain uniform cell gap and pressure on the plastic film substrate, we utilized newly-invented jig and fabrication process. Electro-optical characteristics were better than or equivalent to those of typical glass LCDs though it is thinner, lighter-weight, and more robust than glass LCDs.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

식용버섯과 진균 교차 배양을 활용한 플라스틱 필름의 생물학적 분해효과 (Biodegradation effect of cross-cultivated fungi and edible mushrooms on plastic films)

  • 최두호;이은지;안기홍;이강효
    • 한국버섯학회지
    • /
    • 제22권1호
    • /
    • pp.31-36
    • /
    • 2024
  • 친환경적인 플라스틱 분해를 위한 연구의 한 종류로 버섯균을 활용한 플라스틱 분해 유도를 위해 본 실험을 진행하였다. 본 실험에서는 주변에서 구하기 쉽고 인체에 유해할 가능성이 낮은 식용 버섯을 활용하여 인체 안정성을 더한 플라스틱 분해 기술을 개발하고자 하였으며 31 종의 버섯균들을 대상으로 플라스틱 PE, PS, PET 필름에 대한 분해 효과를 관찰하였다. 본 연구과정에서 4종의 버섯(종이비늘버섯, 영지버섯, 갈색먹물버섯, 느타리)에 의한 플라스틱 분해 효과를 관찰하였으며, 진균과의 교차 배양을 통해 플라스틱 분해 효과를 촉진시킬 수 있는지를 확인하였다. 해당 확인 과정에서 PS에 대한 분해 효과가 가장 높게 나타났으며 이는 진균 Asp. nidulans의 작용에 의한 것이었다. 그러나 Asp.nidulans가 가진 유해성 (Henriet et al., 2012)으로 인해 인체에 무해한 식용버섯균의 활용이 필요하다고 판단되며 비록 버섯균만을 활용한 분해 결과는 저조하나 진균과 버섯균을 교차 배양한 분해 효과는 Asp. nidulans에 의한 분해 효과에 근접하다고 볼 수 있다. 또한 PET에 대해서는 오히려 PT_2822_nig의 사례와 같이 교차 배양한 샘플이 더 높은 수치의 플라스틱 분해 효과를 보였다. 비록 두 실험 결과값들이 유의성을 보이지 못해 추가적인 보완실험이 요구되고 있으나 해당 실험을 통해 버섯균을 활용한 플라스틱 분해 유도 또한 세균, 진균, 밀웜 등을 활용한 분해 유도 과정과 비교하여 경쟁성을 보이고 있다.

Plastic Coating에 의(依)한 사과의 저장연구(貯藏硏究) (Studies on the Preservation of Apples by Plastic Film Coating)

  • 박노풍
    • Applied Biological Chemistry
    • /
    • 제13권2호
    • /
    • pp.131-151
    • /
    • 1970
  • A new method of plastic film coating has been investigated to extend storage life of apples. The film coating was effected by dipping fresh apples in a plastic emulsion. The effect of plastic film coating on the preservation of freshness, respiratory activities and chemical components during storage, has been investigated on four leading varieties of apples. The results are summarized as follows: 1. The effect of film coating on storage life of apples was apparent, resulting in delay of after-ripening, shriveling, softening or physiological impediment as well as reducing consumption of reserve materials and waste fruits. 2. Change in the partial pressure of gas, i.e., increase in carbon dioxide and decrease in oxygen in apple tissue was resulted by the plastic film coating, suggesting that the film deposited on the fruit interfered with the diffusion of gases formed therein. 3. The effects of plastic film coating on the fruit storage varied with the type of plastic emulsions, coating temperature, varieties of apples and degree of fruit ripening. As regard to apple varieties, good results were obtained with PVA 217 for both American Summer Pearmain and Jonathan, and PVC 443 for McIntosh. 4. Reduction in the diminution rates of L-malic acid, ascorbic acid and soluble pectin etc. during storage of apples may account for the improved storage life of the fruits treated with plastic films.

  • PDF

Study about high temperature operating test result For Thin Film-Transistor Electro Phoretic Display on plastic

  • Kim, Sun-Young;Lee, Woo-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.962-964
    • /
    • 2007
  • A 14.1-inch reflective type Thin Film Transistor-Electric Phoretic Display was developed at the esolution of 1280 x 900 lines on plastic substrate. All of the processes of TFT were carried out below $100\;^{\circ}C$ on PES plastic films. The process conditions of TFT were optimized for large area TFT-LCD on plastic substrate. At $60^{\circ}C$ high temperature during 160hours, TFT does not delaminate and IV characteristic is also satisfied.

  • PDF