• 제목/요약/키워드: plastic equivalent strain

검색결과 126건 처리시간 0.031초

고유변형도를 경계조건으로 갖는 대형 각(殼) 구조물 열변형 해석법 개발 (Development of Thermal Distortion Analysis Method on Large Shell Structure Using Inherent Strain as Boundary Condition)

  • 하윤석
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.93-100
    • /
    • 2008
  • There are two ways of conventional thermal distortion analysis. One is the thermal elasto-plastic analysis and the other is the equivalent forces method based on inherent strain. The former needs exorbitant analysis time, while the latter cannot obtain results of stress field and it needs much time consumption with loads modeling on curved plates. Such faults in two methods have made difficulties in thermal distortion analysis of a large structure like ship hull. In order to solve them, new kind of thermal distortion analysis method was developed. We devised that the inherent strains was used as direct input factors in forms of boundary conditions. It was embodied by using thermal expansion coefficient in commercial code. We used the pre-calculated inherent strain as thermal expansion coefficient, and endowed nodes with imaginary temperatures. This method was already adopted at hull block welding distortion analysis which was considered as impossible, and gave productive results such as reduction of work time in the dry dock.

Incompatible 3-node interpolation for gradient-dependent plasticity

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.87-97
    • /
    • 2004
  • In gradient-dependent plasticity theory, the yield strength depends on the Laplacian of an equivalent plastic strain measure (hardening parameter), and the consistency condition results in a differential equation with respect to the plastic multiplier. The plastic multiplier is then discretized in addition to the usual discretization of the displacements, and the consistency condition is solved simultaneously with the equilibrium equations. The disadvantage is that the plastic multiplier requires a Hermitian interpolation that has four degrees of freedom at each node. Instead of using a Hermitian interpolation, in this article, a 3-node incompatible (trigonometric) interpolation is proposed for the plastic multiplier. This incompatible interpolation uses only the function values of each node, but it is continuous across element boundaries and its second-order derivatives exist within the elements. It greatly reduces the degrees of freedom for a problem, and is shown through a numerical example on localization to yield good results.

연속재결정법에 의한 2차원 절삭가공면의 소성스트레인에 관한 연구 (Machined Surface Plastic Strain in Orthogonal Cutting by Subsequent Recrystallizations Technique)

  • 반야풍;김태영;문상돈
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.61-66
    • /
    • 1996
  • The subsequent recrystallizations technique, and experimental strain measurement method by use of recrystallization phenomena, has been successfully applied for the observation of machined surface plastic zones with equivalent plastic strain .epsilon. .geq. 0.5, 0.12 and 0.02 of type 304 stainless steel. The depth of the zone with .epsilon. .geq. 0.5 is very small, 10-15 .mu. m, while those with .epsilon. .geq. 0.12 are 100-200 .mu. m and 200-450 .mu. m, respectively. The depths increase with increasing depth of cut and with decreasing rake angle. The relation between the depth of the zones and the cutting paramenters is shown. The deformation state ahead of the quick-stop cut was also well visualized by the technique.

  • PDF

소성역체결 볼트의 체결력과 마찰계수에 관한 연구 (Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range)

  • 손승요;신근하
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석 (Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth)

  • 김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

비대칭 사다리꼴 단면 선재의 다단 인발 공정설계 (Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles)

  • 지세인;이경훈;홍리석;정진영;김종성;김병민
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet)

  • 박진기;김영석;;유봉선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

티타늄 합금의 변형률속도 및 온도를 고려한 인공신경망 기반 경화모델 성능평가 (Evaluation of Performance of Artificial Neural Network based Hardening Model for Titanium Alloy Considering Strain Rate and Temperature)

  • 김민기;임성식;김용배
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.96-102
    • /
    • 2024
  • This study addresses evaluation of performance of hardening model for a titanium alloy (Ti6Al4V) based on the artificial neural network (ANN) regarding the strain rate and the temperature. Uniaxial compression tests were carried out at different strain rates from 0.001 /s to 10 /s and temperatures from 575 ℃ To 975 ℃. Using the experimental data, ANN models were trained and tested with different hyperparameters, such as size of hidden layer and optimizer. The input features were determined with the equivalent plastic strain, strain rate, and temperature while the output value was set to the equivalent stress. When the number of data is sufficient with a smooth tendency, both the Bayesian regulation (BR) and the Levenberg-Marquardt (LM) show good performance to predict the flow behavior. However, only BR algorithm shows a predictability when the number of data is insufficient. Furthermore, a proper size of the hidden layer must be confirmed to describe the behavior with the limited number of the data.

콘크리트의 이방성 손상-소성 모델 (Anisotropic Continum Damage-Plastic Model for Concrete)

  • 변근주;송하원;이기성;김종우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.91-96
    • /
    • 1994
  • The growth and propagation of microcracks existed in concrete cause failure of concrete. This is called "damage". The concepts of two principles, equivalent strain principle and equivalent energy principle, are reviewed and compared in the case of uniaxial compressior to concrete. The damage evolution law and constitutive equation are derived by using the Helmholz free energy and the dissipation potential by means of the thermodynamic principles.rinciples.

  • PDF

Partially confined circular members subjected to axial compression: Analysis of concrete confined by steel ties

  • Eid, R.;Dancygier, A.N.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.737-765
    • /
    • 2005
  • This paper presents a theoretical model for the behavior of partially confined axi-symmetric reinforced concrete members subjected to axial load. The analysis uses the theories of elasticity and plasticity to cover the full range of the concrete behavior. Analysis of the elastic range of the problem involves boundary conditions that are defined along a relatively simple geometry. However, extending the analysis into the plastic range involves difficulties that arise from the irregular geometry of the boundary between the plastic zone and the elastic zone, a boundary which is also changing as the axial load increases. The solution is derived by replacing the discrete steel ties with an equivalent tube of thickness $t_{eq}$ and by analyzing the concrete cylinder, which is uniformly confined by the equivalent tube. The equivalency criterion initiates from a theoretical analysis of the problem in its elastic range where further finite element analysis shows that this criterion is valid also for the plastic range of the cylinder material. According to the proposed model, the efficiency of the lateral reinforcement can be evaluated by the equivalent thickness $t_{eq}$. Comparison with published test results of confined reinforced concrete stress-strain curves shows good agreement between the test and the analytical results.