DOI QR코드

DOI QR Code

Incompatible 3-node interpolation for gradient-dependent plasticity

  • Chen, G. (Faculty of Engineering & Surveying, The University of Southern Queensland) ;
  • Baker, G. (Faculty of Engineering & Surveying, The University of Southern Queensland)
  • Received : 2003.05.15
  • Accepted : 2003.10.09
  • Published : 2004.01.25

Abstract

In gradient-dependent plasticity theory, the yield strength depends on the Laplacian of an equivalent plastic strain measure (hardening parameter), and the consistency condition results in a differential equation with respect to the plastic multiplier. The plastic multiplier is then discretized in addition to the usual discretization of the displacements, and the consistency condition is solved simultaneously with the equilibrium equations. The disadvantage is that the plastic multiplier requires a Hermitian interpolation that has four degrees of freedom at each node. Instead of using a Hermitian interpolation, in this article, a 3-node incompatible (trigonometric) interpolation is proposed for the plastic multiplier. This incompatible interpolation uses only the function values of each node, but it is continuous across element boundaries and its second-order derivatives exist within the elements. It greatly reduces the degrees of freedom for a problem, and is shown through a numerical example on localization to yield good results.

Keywords

References

  1. Belytschko, T. and Lasry, D. (1989), "A study of localization limiters for strain-softening in statics dynamics", Comput. Struct., 33(3), 707-715. https://doi.org/10.1016/0045-7949(89)90244-7
  2. de Borst, R. (1991), "Simulation of strain localization: A reappraisal of the Cosserat continuum", Engineering Computations (Swansea, Wales), 8(4), 317-332. https://doi.org/10.1108/eb023842
  3. de Borst, R. (1993), "Generalization of J2-flow theory for polar continua", Comput. Meth. Appl. Mech. Eng., 103(3), 347-362. https://doi.org/10.1016/0045-7825(93)90127-J
  4. de Borst, R. and Mühlhaus, H.-B. (1992), "Gradient-dependent plasticity: Formulation and algorithmic aspects", Int. J. Numer. Meth. Eng., 35(3), 521-539. https://doi.org/10.1002/nme.1620350307
  5. de Borst, R., Pamin, J. and Sluys, L.J. (1995), "Computation issues in gradient plasticity", Continuum Models for Materials with Microstructure, H.B. Muhlhaus, ed., Wiley, Chichester, England, 159-200.
  6. de Borst, R. and Sluys, L.J. (1991), "Localisation in a Cosserat continuum under static and dynamic loading conditions", Comput. Meth. Appl. Mech. Eng., 90(1-3), 805-827. https://doi.org/10.1016/0045-7825(91)90185-9
  7. de Borst, R., Sluys, L.J., Mühlhaus, H.B. and Pamin, J. (1993), "Fundamental issues in finite element analyses of localization of deformation", Engineering Computations (Swansea, Wales), 10(2), 99-121. https://doi.org/10.1108/eb023897
  8. Li, X. and Cescotto, S. (1996), "Finite element method for gradient plasticity at large strains", Int. J. Numer. Meth. Eng., 39(4), 619-633. https://doi.org/10.1002/(SICI)1097-0207(19960229)39:4<619::AID-NME873>3.0.CO;2-1
  9. Meftah, F. and Reynouard, J.M. (1998), "Multilayered mixed beam element in gradient plasticity for the analysis of localized failure modes", Mechanics of Cohesive-Frictional Materials, 3(4), 305-322.
  10. Mühlhaus, H.B. (1989), "Application of Cosserat theory in numerical solutions of limit load problems", Ingenieur-Archiv, 59, 124-137. https://doi.org/10.1007/BF00538366
  11. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity : Theory and Practice, Pineridge Press, Swansea.
  12. Pamin, J. (1994), "Gradient-dependent plasticity in numerical simulation of localization phenomena", PhD Thesis, Dept. of Civil Eng., Delft University, Delft, Holland.
  13. Vardoulakis, I., Shah, K.R. and Papanastasious, P. (1992), "Modelling of tool-rock shear interfaces using gradient-dependent flow theory of plasticity", Int. J. of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(6), 573-582. https://doi.org/10.1016/0148-9062(92)91615-C
  14. Zervos, A., Papanastasiou, P. and Vardoulakis, I. (2001), "A finite element displacement formulation for gradient elastoplasticity", Int. J. Numer. Meth. Eng., 50(6), 1369-1388. https://doi.org/10.1002/1097-0207(20010228)50:6<1369::AID-NME72>3.0.CO;2-K
  15. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Butterworth-Heinemann, Oxford; Boston.