• Title/Summary/Keyword: plastic energy

Search Result 1,316, Processing Time 0.027 seconds

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Study on the Design of Deformation Tube for 200kJ Large Energy Absorption (200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구)

  • Kim, Jin Mo;Lee, Jong Kil;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • The market share of high-speed railway vehicles is increasing across the world. A high-performance impact energy absorption factor is essential to satisfy the safety standards of railway vehicles. A deformed tube assembly is a typical energy absorption factor in railway vehicles. The tube assembly comprises a deformed tube and a press-fitting punch, its performance depends on the absorption energy characteristics in the plastic zone of the tube. In this study, a deformed tube assembly of a railway vehicle is designed that can absorb a maximum impact energy of 200kJ under plastic deformation. Slab method and finite element analysis are used to estimate the reaction force of the punch in the initial stage, the performance of the designed tube assembly is confirmed experimentally.

A feasibility study of using a 3D-printed tumor model scintillator to verify the energy absorbed to a tumor

  • Kim, Tae Hoon;Lee, Sangmin;Kim, Dong Geon;Jeong, Jae Young;Yang, Hye Jeong;Schaarschmidt, Thomas;Choi, Sang Hyoun;Cho, Gyu-Seok;Kim, Yong Kyun;Chung, Hyun-Tai
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3018-3025
    • /
    • 2021
  • The authors developed a volumetric dosimetry detector system using in-house 3D-printable plastic scintillator resins. Three tumor model scintillators (TMSs) were developed using magnetic resonance images of a tumor. The detector system consisted of a TMS, an optical fiber, a photomultiplier tube, and an electrometer. The background signal, including the Cherenkov lights generated in the optical fiber, was subtracted from the output signal. The system showed 2.1% instability when the TMS was reassembled. The system efficiencies in collecting lights for a given absorbed energy were determined by calibration at a secondary standard dosimetry laboratory (kSSDL) or by calibration using Monte Carlo simulations (ksim). The TMSs were irradiated in a Gamma Knife® IconTM (Elekta AB, Stockholm, Sweden) following a treatment plan. The energies absorbed to the TMSs were measured and compared with a calculated value. While the measured energy determined with kSSDL was (5.84 ± 3.56) % lower than the calculated value, the energy with ksim was (2.00 ± 0.76) % higher. Although the TMS detector system worked reasonably well in measuring the absorbed energy to a tumor, further improvements in the calibration procedure and system stability are needed for the system to be accepted as a quality assurance tool.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.

An Analysis of Cold Foging at Final State Using Rigid-Plastic FEM (강소성 유한요소법을 이용한 냉간단조 공정의 최종단계 해석)

  • Choi, Y.;Jung, S.Y.;Kim, B.M.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.108-115
    • /
    • 1999
  • In this paper, the analysis of cold forging in final state has been performed by using rigid-plastic FEM. For the analysis, the geometry and flow stress of the workpiece are required. One method to obtain the geometry is measurement of that made from experimet. To evaluate the flow stress, average effective strain is calculated from the load-stroke diagram by using energy method. The numerical test performed to show the validity of propose method. The analysis of PFIR, the precision forging of spurgear with inside relif, is performed.

  • PDF

A Basic Study on Fatigue Fracture Model at Elevated Temperatures by the Dimensional Analysis Method (차원해석법에 의한 고온피로 파괴 모델의 기초적 연구)

  • 서창민;김영호;권오헌
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.105-112
    • /
    • 1992
  • The main purpose of this study is to derive a law of fatigue crack growth rate in the region of elastic or elasto-plastic fracture mechanics at elevated temperatures through the application of dimensional analysis. An equation of elasto-plastic fatigue crack growth rate at elevated temperatures appeared a new Arrhenius type equation containing J-integral range and absolute temperature. The elastic or elasto-plastic crack growth rate equation shows a fairly good agreement with the experimental results for Cr-Mo-V rotor steel and Hastelloy-X alloy in the comparatively wide temperature ranges.

  • PDF

Study on the laser transmission-welding of thermoplastics (열가소성 플라스틱의 레이저 투과 접합에 환한 연구)

  • Seo Myung-hee;Ryu Kwang-hyun;Nam Gi-jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.34-40
    • /
    • 2005
  • Laser welding of thermoplastics is a new jointing technique with a host of advantages. It is not only another extremely useful welding method but also a cost-effective alternative to traditional techniques involving screws or adhesives. Transmission laser-welding of thermoplastics such as polycarbonate(PC), polypropylene(PP), polyvinyl chloride(PVC), low density polyethylene(LDPE) and acrylic using a high power diode laser has been studied experimentally. The optical transmission of each plastic has been measured at laser wavelength of 808nm. The weld process has been characterized by the specific energy and weld time required for each plastic. The characteristics of laser welding between same plastics have also been analyzed.

Plastic Flow Direction and Strength Evaluation of Dissimilar Fiction Bonding Interface Joints (이종마찰 접합계면부의 소성유동 방향성 및 강도 평가)

  • Oh, Jung-Kuk;Sung, Back-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • Friction welding has many merits such as energy efficiency, simple processing, etc butt difficult to obtain good weld at the welded interface and heat affected zone. To date, the continuum mechanics and fracture mechanics are utilized to analyse stresses at the interface and propagation of cracks. In this study. STS304 and SM15C are selected because they can be differentiated distinctively from metallic point of view and crack can be observed easily. It is ovserved during friction welding that STS304, rotary part is hatter than SH15C, fixed part. The last fracture occurs around the center because the surface of fatigue fracture has smooth regions, due to the separation phenomenon in plastic flows layers and striation dimple pattern.