• 제목/요약/키워드: plastic energy

Search Result 1,340, Processing Time 0.026 seconds

Soil Surface Energy Balance and Soil Temperature in Potato Field Mulched with Recycled-Paper and Black Plastic Film (감자밭의 재생종이 및 흑색 플라스틱 필름 멀칭에 따른 지표면 에너지 수지와 토양온도의 변화)

  • 최일선;이변우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • The thermal and photometric properties of mulching materials modify the radiation and energy balance on the mulched soil surface and thereby change the soil temperature. The soil surface energy balances and soil temperatures under the mulching treatments of non-mulched control, recycled paper (RPM), and black polyethylene film (BPFM) were compared before and after the establishment of potato canopy. On August 30 in 1998 when potato was not emerged yet and solar radiation was 17.9 MJ $m^{-2}$${day}^{-1}$ , the net radiation of the soil surface was estimated as 10.(1, 2. 4, and 1.3 MJ $m^{-2}$${day}^{-1}$ under the control, BPFM, and RPM, respectively. The sensible and latent heat loss from the soil surface was 9.65 MJ $m^{-2}$${day}^{-1}$ in the control, most of the net radiation being lost through evaporation and convection, whereas it amounted only to 1.39 MJ $m^{-2}$${day}^{-1}$ in BPFM and 1.36 MJ $m^{-2}$${day}^{-1}$ in RPM. Therefore, the soil heat fluxes were 0.36 1.02, and 0.06 MJ m$^{-2}$ day$^{-1}$ under the control, BPFM and RPM, respectively. On September 27 when potato canopy was fully developed, the soil surface net radiation in the control was sharply decreased as compared to that of Aug. 30, whereas the net radiation of the mulched soil surfaces showed little changes. The soil heat flux was -0.01, 0.95, and 0.12 MJ $m^{-2}$${day}^{-1}$ at the soil surface under the control, BPFM and RPM, respectively. As the mulching treatments brought about such alteration of energy partitioning into the soil, the highest soil temperature was recorded in BPFM and the lowest in RMP without regard to potato canopy development. However, the soil temperature differences among the treatments become smaller when potato canopy were fully developed.

  • PDF

Bio-Degradable Plastic Mulching in Sweetpotato Cultivation (생분해성 멀칭필름을 이용한 고구마 재배)

  • Lee, Joon-Seol;Jeong, Kwang-Ho;Kim, Hag-Sin;Kim, Jeong-Ju;Song, Yeon-Sang;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This experiment was conducted to determine the usability of biodegradable plastic in the mulching cultivation of sweetpotato. For this, we investigated the physical characteristics, biodegradability, leaching, yield, workability, etc. of biodegradable films. Compared with general mulching materials, biodegradable Poly butyleneadipate-co-butylene succinate (PBSA) and PLC+starch showed $2{\sim}27$% higher tensile strength, but $2{\sim}22$% lower elongation and $2{\sim}6$% lower tear strength. In the leaching test on the biodegradable films, heavy metals were detected very little or not at all. As to difference in ground temperature according to mulching material, the temperature was high in order of PLC+starch > PBSA > Low Density Polyethylene (LDPE) > Control during the period from late June to mid July, but in order of LDPE > PLC+starch > PBSA > None during the period from late July to late September. In the mulching cultivation of sweet potato, biodegradable films PBSA (EA, EB, EC) and PLC+starch (DD, DE, DF) began to degrade after 60 days from the cut planting of sweet potato, and over 95% degraded after 120 days. The quantity of roots was 3,070 kg/10a for PBSA, 3,093 kg/10a for PLC-starch, and 2,946 kg/l10a for LDPE, showing no significant difference according to mulching material. Considering the physical characteristics, biodegradability, environment, convenience in harvesting work, yield, etc. of the films in the mulching cultivation of sweet potato, biodegradable films are expected to be very useful.

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

Framed Steel Plate Wall subject to Cyclic Lateral Load (주기하중을 받는 골조강판벽의 실험연구)

  • Park, Hong Gun;Kwack, Jae Hyuk;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.781-792
    • /
    • 2004
  • Experiments were performed to study the cyclic behavior of framed steel walls with thin web plates. Five specimens of single-bay and three-story steel plate walls were tested for cyclic lateral load. The parameters for the test specimens included the plate thickness and the column strength. Based on the test results, the strength, deformability, and energy dissipation capacity of the framed steel walls were studied. The test results showed that the behavioral characteristics of the framed steel walls with thin web plates were different in many aspects from those of the conventional braced frame, and the steel wall with a stiffened web plate exhibited cantilever action, high strength, and low ductility. With the framed steel plate walls, local plate buckling and tension-field action developed in the thin web plates, and plastic deformation was uniformly distributed along the wall's height. As a result, the framed steel plate walls exhibited combined flexural and shear deformation, but they also showed high strength and energy dissipation capacity. Moreover, such walls have high deformability, which was equivalent to that of the conventional moment frame. Frame members such as columns and beams, however, must be designed to resist the tension-field action of the thin web plates. If the column does not have sufficient strength, and if its sections are not compact enough, the overall strength of the framed steel wall might be significantly decreased by the development of the soft-story mechanism. The framed steel walls with thin web plates have advantages, such as high deformability and high strength. Therefore, they can be used as ductile elements in earthquake-resistant systems.

Soft-lithography for Manufacturing Microfabricated-Circuit Structure on Plastic Substrate (플라스틱기판 미세회로구조 제조를 위한 소프트 석판 기술의 적용)

  • Park, Min-Jung;Ju, Heong-Kyu;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.929-932
    • /
    • 2012
  • Novel platform technology has been developed to replace the photolithography used currently for manufacturing semiconductors and display devices. As a substrate, plastics, especially polycarbonates, have been considered for future application such as flexible display. Other plastics, i.e. polyimide, polyetheretherketon, and polyethersulfone developed for the substrate at this moment, are available for photolithography due to their high glass transition temperature, instead of high price. After thin polystyrene film was coated on the polycarbonate substrate, microstructure of the film was formed with polydimethylsiloxane template over the glass transition temperature of the polystyrene. The surface of the structure was treated with potassium permanganate and octadecyltrimethoxysilane so that the surface became hydrophobic. After this surface treatment, the nanoparticles dispersed in aqueous solution were aligned in the structure followed by evaporation of the DI water. Without the treatment, the nanoparticles were placed on the undesired region of the structure. Therefore, the interfacial interaction was also utilized for the nanoparticle alignment. The surface was analyzed using X-ray photoelectron spectrometer. The evaporation of the solvent occurred after several drops of the solution where the hydrophilic nanoparticles were dispersed. During the evaporation, the alignment was precisely guided by the physical structure and the interfacial interaction. The alignment was applied to the electric device.

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

Numerical Study on the Strength Safety of High Pressure Gas Cylinder (고압가스 압력용기의 강도안전성에 관한 수치해석적 연구)

  • Kim, Chung-Kyun;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • The strength safety of high pressure gas cylinder has been analyzed by using a finite element method. In this study, the internal gas pressures of a steel bombe include a service charging pressure of $9kg/cm^2$, high limit charging pressure of $18.6kg/cm^2$, high limit of safety valve operation pressure $24.5kg/cm^2$, and hydraulic testing pressure of $34.5kg/cm^2$. The computed FEM results indicate that the strength safety for a service charging pressure of $9kg/cm^2$ and high limit charging pressure of $18.6kg/cm^2$ is safe because the stress of a gas cylinder is within yield strength of steel. But the stress for a hydraulic testing pressure of $34.5kg/cm^2$ sufficiently exceeds the yield strength and remains under the tensile strength. If the hydraulic testing pressures frequently apply to the gas cylinder, the bombe may be fractured because a fatigue residual stress is accumulated on the lower round end plate due to a plastic deformation. The computed results show that the concentrated force in which is applied on a skirt zone does not affect to the lower round end plate, and the most weak zone of a bombe is a middle part of a lower round end plate between a bombe body and a skirt for a gas pressure. Thus, the FEM results show that the profile of a lower round end plate is an important design parameter of a high pressure gas cylinder.

Development of Key Technologies for Large Area Forming of Micro Pattern (대면적 미세 성형공정 원천기술 개발)

  • Choi, Doo-Sun;Yoo, Yeong-Eun;Yoon, Jae-Sung;Je, Tae-Jin;Park, Si-Hwan;Lee, Woo-Il;Kim, Bong-Gi;Jeong, Eun-Jeong;Kim, Jin-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.777-782
    • /
    • 2011
  • Micro features on the surface are well-known to have significant effects on optical or mechanical properties such as the optical interference, reflectance at the surface, contact angle, interfacial friction, etc. These surface micro features are increasingly employed to enhance the functionality of the applications in various application areas such as optical components for LCD or solar panel. Diverse surface features have been proposed and some of them are showing excellent efficiency or functionality, especially in optical applications. Most applications employing the micro features need manufacturing process for mass production and the injection molding and roll-to-roll forming, which are typical processes for mass production adopting polymeric materials, may be also preferred for micro patterned plastic product. Since the functionality or efficiency of the surface structures generally depends on the shape and the size of the structure itself or the array of the structures on the surface, it would be very important to replicate the features very precisely as being designed during the molding the micro pattern applications. In this paper, a series of research activities is introduced for roll-to-roll forming of micro patterned film including filling of patterns with UV curable resin, demolding of surface structures from the roll tool, control of surface energy and cure shrinkage of resin and dispose time and intensity of the UV light for curing of UV curable resin.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

Strength toss of F-Fiber Obtained from Recycling FRP Ship in a Basic Solution (폐 FRP 선박에서 분리하여 얻은 F섬유의 염기성 용액에서의 강도저하)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2008
  • It has been reported that FRP (fiber reinforced plastic) can be recycled by separating into layers instead of crushing into powder. F-fiber obtained from roving layer separated from FRP, has bigger tensile strength than the bundle of glass fibers of which FRP was made (more than 90%). SEM image of F-fiber shows the presence of some resin. Under the proposition of usage of F-fiber in the concrete material, tensile strength is examined after soaking in a basic solution (NaOH+KOH). The reaction mechanism of strength loss may be considered as an attack of hydroxide ion ($OH^-$) on a chemical bond of Si-O-Si of glass fiber. The simulation graph of the strength loss data implies certain reaction mechanism. While in the early stage kinetically controlled reaction results in a fast drop of tensile strength, after 30 days dispersion rate of hydroxide ion plays a major role in strength loss. This result is similar to the one for the AR glass. An extrapolation of the graph would make an assumption about the lift time of F-fiber possible.

  • PDF