• Title/Summary/Keyword: plastic design approach

Search Result 173, Processing Time 0.026 seconds

Efficiency of CFT column plastic design approach for frame structures subjected to horizontal forces

  • SeongHun Kim;Hyo-Gyoung Kwak
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.527-541
    • /
    • 2023
  • This paper emphasizes the use of CFT columns in frame structures subjected to strong horizontal forces and shows that the efficiency of using CFT columns is increased when the plastic design approach is adopted. Because the plastic design approach is based on redistribution of the force of the internal member, a double node for the rotational degrees of freedom, where the adjacent two rotational degrees of freedom can be connected by a non-dimensional spring element, is designed and implemented into the formulation. In addition, an accompanying criterion is considered in order to make it possible to describe the continuous moment redistribution in members connected to a nodal point up to a complete plastic state. The efficiency of CFT columns is reviewed in comparison with RC columns in terms of the cost and the resistance capacity, as defined by a P-M interaction diagram. Three representative frame structures are considered and the obtained results show that the most efficient and economical design can be expected when the use of CFT columns is considered on the basis of the plastic design, especially when a frame structure is subjected to significant horizontal forces, as in a high-rise building.

A Study on the Necessity of the Implementation of "Plastic Arts" in Environmental Design Studio Programs -Focused on the cases of France and Korea- (환경설계교육에 있어 조형예술 프로그램의 필요성에 관한 연구 - 한국과 프랑스의 사례를 중심으로 -)

  • 오웅성
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.108-121
    • /
    • 1999
  • Creative spatial production in Environmental design relies, in large part, on the artistic talent of the designer(s) that is applied to the design solutions or schematic plans. This study proposes the importance and necessity of the use of 'Plastic Arts" or the technique of artistic manipulation and definition of space in Environmental Design studio programs. This fundamental design approach is currently lacking in Korean design studio programs. Moreover, the current trend of interdisciplinary design (that is, between landscape architecture, architecture, urban and environmental planning) emphasizes the importance of such techniques. "plastic Arts" techniques can serve as a basic code of communication between design disciplines and can in itself be a common approach. The method of this study is based on the empirical datas, that is, the educational performances which are executed in Landscape studio programs of some Korean Universities. The results are summarized as follows; 1. The program, "Plastic Arts" Should be included in the basic organization of Landscape design studio programs. 2. Unlike France where "Plastic Arts" program is implemented through out Landscape Architecture programs in Korea, "Plastic Arts" should be intensified and continued for longer period of time for students in the initial years. 3. In creation of "Plastic Arts" programs for Korean Landscape Design studios, the traditional and contemporary values of aesthetic of the Nature should be taken in consideration. 4. In order to confirm the necessity of "Plastic arts" program in the organization of landscape curriculum, more studies should be done, with empirical datas.pe curriculum, more studies should be done, with empirical datas.

  • PDF

Determination of earthquake safety of RC frame structures using an energy-based approach

  • Merter, Onur;Ucar, Taner;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.689-699
    • /
    • 2017
  • An energy-based approach for determining earthquake safety of reinforced concrete frame structures is presented. The developed approach is based on comparison of plastic energy capacities of the structures with plastic energy demands obtained for selected earthquake records. Plastic energy capacities of the selected reinforced concrete frames are determined graphically by analyzing plastic hinge regions with the developed equations. Seven earthquake records are chosen to perform the nonlinear time history analyses. Earthquake plastic energy demands are determined from nonlinear time history analyses and hysteretic behavior of earthquakes is converted to monotonic behavior by using nonlinear moment-rotation relations of plastic hinges and plastic axial deformations in columns. Earthquake safety of selected reinforced concrete frames is assessed by using plastic energy capacity graphs and earthquake plastic energy demands. The plastic energy dissipation capacities of the frame structures are examined whether these capacities can withstand the plastic energy demands for selected earthquakes or not. The displacements correspond to the mean plastic energy demands are obtained quite close to the displacements determined by using the procedures given in different seismic design codes.

Design of Gas Supply System for Microcellular Foamed Injection Molding Using Axiomatic Approach (공리적 접근을 사용한 초미세 발포 사출기용 가스공급장치의 설계)

  • Lee, J.W.;Cha, S.W.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.414-419
    • /
    • 2001
  • Microcellular foamed plastic is a foaming technology that is safer to the environment and has no significant deterioration of mechanical properties compared to the conventional foamed plastic. Currently, the development of the injection-molding machine for microcellular plastic (MCP) is nearing completion. Currently, researches on the mass production system for the MCP injection-molding machine are under progress. The purpose of this paper is to design the gas supply system suitable for microcellular foaming in the injection-molding machine. For the design process, Axiomatic Approach, a powerful tool for design, will be used.

  • PDF

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Using Features as the Knowledge Carrier for Cross Company Collaboration and Change Management - A design methodology for compressing lead-time from plastic part design to mold making

  • Zengzhi, Li;Qinrong, Fu;Feng, Lu Wen;Bin, Song
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.43-50
    • /
    • 2003
  • This paper presents a methodology in which the knowledge of design intents and change requests is communicated unambiguously cross collaboration partners through features. The domain of application is focused on the plastic part design for enabling effective collaboration between the product design and plastic mold making. The methodology takes the feature-based design approach and allows design features and knowledge to be reused in plastic injection mold design. It shortens the mold design lead-time, reduces mold design efforts, and enables unambiguous and fast design change management between product and mold designers. These contribute to the reduction of product development cycle time.

Optimal Plastic Design of Planar Frames (평면(平面) Frame의 최적소성설계(最適塑性設計))

  • S.J.,Yim;S.H.,Hwang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Plastic Analysis and Minimum Weight Design of Plane Frame Structures (평면(平面) 뼈대 구조물(構造物) 소성해석(塑性解析) 및 최소중량(最小重量) 설계(設計))

  • Lee, Dong Whan;Yang, Chang Hyun;Whang, Won Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.111-120
    • /
    • 1986
  • Steel frame structures are widely used in construction because of their efficient strength and rigidity and considered proper cases for design and analysis using concept of plastic behavior. The purpose of plastic analysis is to determine the collapse load of a structure when the plastic moments of its members are given, and optimal plastic design is to compute the plastic moments of the members that minimize total structural weight. In this paper, the plastic analysis and optimal design are performed by using the static approach and solved by the simplex method. From the result of the analysis the solutions by this study show more efficiency in calculations. Also, the structural weight solved by the simplex method in case of two story frame is proved more economical than the one using the elastic design around 24%.

  • PDF

Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach (탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF