• Title/Summary/Keyword: plastic board drains

Search Result 24, Processing Time 0.033 seconds

An Experimental Study on the Effect of Consolidation Improvement Using Horizontal Drains (수평배수재를 이용한 압밀개량효과에 대한 실험연구)

  • 김지용;김정기;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.33-40
    • /
    • 2000
  • The horizontal drain method is one of the soil improvement methods in reclamation works using dredged soils. In this method, plastic drain boards are installed horizontally in the ground, and a seepage pressure or negative pressure is applied through one end of these drains. In this study, a basic consolidation test using horizontal drains was conducted to investigate the effectiveness of this method. The configuration of soil box which was used in this test is 100cm(B)${\times}$100cm(L)${\times}$85cm(H). The drain board was reduced to 25mm${\times}$5mm. The variations in settlement and volume of drain water during the consolidation process were measured, and the distribution of water content and the transpormation of horizontal drain were investigated.

  • PDF

The Application to the New Drain Materials for Soft Ground Improvement (연약지반 개량을 위한 신배수재의 적용성에 관한 비교 실험)

  • 김병일;이동현;양상호;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.761-766
    • /
    • 2003
  • In environmental and economical views Plastic Board Drain(PBD) has many problems which is generally used in improving soft grounds. In order to improve these, Rags drain and Sponge drain are developed in this study, and the application to drains is presented though comparing with PDB and Sand drain In consolidation effects. Test results show that the consolidation effects, including consolidation rate and stregth, increase in order of Sand and Rags, PDB and Sponge drain.

  • PDF

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Development and Applicability of Discharge Capacity Testing Apparatus Using Penetration Method (관입식 복합 통수능 시험기의 개발과 적용성)

  • Yoo, Nam Jae;Kim, Dong Gun;Park, Byung Soo;Jun, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.313-320
    • /
    • 2008
  • The discharge capacity testing apparatus using penetration method, being able to simulate in laboratory the condition of embedding plastic board drains in field, was developed to investigate consolidation characteristics of ground and to figure out discharge capacity of drains. The developed apparatus with a mandrel and penetrating device was designed to insert PBD into the ground prepared by previously applied pressure, being different from the conventional testing method that the drain was installed and the ground material was poured subsequently. Discharge capacity tests with the conventional apparatus as well as the newly developed one were performed to assess the applicability of the latter. As a result of tests, the conventional method showed delayed consolidation due to overall disturbance of ground and local deformation of drain caused by inhomogeneity of ground. Therefore discharge capacity of drain with the conventional apparatus was measured more or less larger than the expected values whereas discharge capacity with new one could be measured similar to the actual value in field.

A Study on Centrifuge Model Experiments of Soft Soil Ground Installed with PBD (PBD가 설치된 연약지반의 원심모형실험에 관한 연구)

  • Jeong, Gil-Soo;Park, Byung-Soo;Jeon, Sang-Hyun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.101-108
    • /
    • 2006
  • This study is the results of experimental and numerical study on the consolidational behavior of multi-layered soft soil ground installed with plastic board drains (PBD). Centrifuge model tests with a marine clay sampled from field were performed to investigate the consolidational behavior of multi-layered ground where a dredged soil was placed on the soft clay ground and PBDs were installed. Test results were compared with those of numerical analyses, using the 2-D equivalent model previously proposed. From test results, it was found that the amount of consolidation settlement occurred in the original ground due to embankment surcharge loads was in the range of 38% of total settlement in the whole ground. From the results of cone penetration tests executed after finishing the centrifuge model tests, the cone resistance was found to increase with depth. The measured water contents inbetween PBDs were in the ranges of 38~50% and their values tended to increase with increasing the distance between PBDs.

  • PDF

Effect of PBD to improve soft marine sedimentary ground

  • Jeong, Jin-Seob;Hwang, Woong-Ki;Jeong, Choong-Gi;Kim, Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • The effect of plastic board drains (PBDs)on ground improvement was checked out considering three crucial factors: ground settlement, undrained shear strength, and residual water head. First, the settlement analysis including initial settlement induced by reclamation of sand mat was conducted by back calculation analysis with measured data. Its result showed toot the PBDs used for this site worked well on improving soft ground. Secondly, the undrained shear strength was investigated by laboratory and in-situ tests including unconsolidated-undrained triaxial compression (UU) tests, unconfined compression tests, in-situ vane tests, and cone penetration tests. From the test results, they showed that the undrained shear strength of the improved ground by PBDs was significantly increased as well as the strength increasing ratio especially $10{\sim}15m$ below the ground surface on site. Thirdly, the residual water head measurement from the in situ dissipation test was found the same as the static water head, which indicated primary consolidation was completed and the effect of soil improvement with PBDs can be confirmed.

A Study on the Horizontal Drainage Method Using Plastic Drain Board (플라스틱 배수재를 이용한 수평배수공법에 관한 연구)

  • 황정규;김홍택;김석열;강인규;김승욱
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.93-112
    • /
    • 1998
  • In the present study, 2-D consolidation theory of the dredged clay by means of the horizontal drain method is proposed. The horizontal drain method to install the drains such as plastic drain board within the dredged clay is a soil improvement method to accelerate the consolidation by expelling pore water in the vertical direction along the horizontal drains. Based on the finite strain consolidation theory by Gibson et al., the partial differential equation of 2-D consolidation due to the horizontal drain is derived. The consolidation due to the horizontal drain can be illustrated from combined self-weight consolidation effect and consolidation effect by horizontal drains. For the prediction of consolidation settlement and degree of consolidation numerical analysis is suggested on the basis of Dufort-Frankel finite differential algorithm. Also, the analytical procedures proposed in this study are verified by the model tests, and the predictions of the consolidation settlement and degree of consolidation are compared with the results obtained from the tests for the dredged clay gathering at Siwha site in Ansan, Korea. For the predictions, the relationship void ratio vs effective stress and the relationship permeability vs void ratio of the dredged clay are obtained from the odometer tests. Additionally, the parametric study for consolidation settlement by variations of design parameters related with horizontal drain method is carried out. Based on the results of the parametric study, design .charts for the preliminary design are also proposed.

  • PDF

Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments. (교대말뚝기초의 측방유동에 관한 원심모형실험)

  • Choi, Dong-Hyurk;Jeong, Gil-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF