• Title/Summary/Keyword: plastic bending moment

Search Result 146, Processing Time 0.027 seconds

Behaviour of the Reinforced Concrete Columns with Shear Reinforcement (전단보강량에 따른 철근콘크리트 기둥의 거동)

  • Nam, Sang-Uk;Song, Han-Beom;Tae, Kyung-Hoon;Yi, Waon-Ho;Oh, Sang-Hoon;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Under earthquake loads, the columns on the lower stories carry large axial forces and horizontal forces as the earthquake loads are acting horizontally and vertically on the building. To distribute the energy entered into the building under earthquakes according to the plastic deformation of the members, it is safer and more economic to persuade plastic hinge to occur in the beams rather than on the columns. However, it is unavoidable to have plastic hinge occurring on the columns when it is applied on both of the main axes of the building, which results in high shear force on the column end, and reinforced concrete column may result in sudden brittle failure due to bending moment and shear force. To increase restriction of the reinforced concrete column on the horizontal forces, this study uses repetitive loading experiments with different amount of shear reinforcement, and analyzes and compares the structural safety and behaviour of the reinforced test materials.

  • PDF

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings (선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석)

  • Geo-Rak Park;Kyu Song;Youngjae Choi;Nak-Kyun Cho;Chung-Soo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Elasto-plastic behaviour of structural laminated timber joint by flange thickness of H beam (H형강 플랜지 두께변화에 따른 구조용집성재 접합부의 탄소성거동)

  • Kim, Soon Chul;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.385-393
    • /
    • 2006
  • In Korea, the effective utilization of wod structure is encour aged to preserve natural resources and the global environment.ote demand for wod. The efective combination of structural la minated timber and other materials is expected to extend the potential of building structures. This research examines the moment resis tance-type jointing method using structural laminated timber and H-section stel aiming at development of the two-direction frame for lar ge 9 mm and 12 mm) of the H section. Therefore, we conducted the experiment with bending test of the joints to investigate the s tifnes, strength, strain distributions of laminated timber an d of the flange of the H section, and failure paterns. As shown in the results, t he joints with a flange thicknes of 9 mm and 12 m have superi or strength with a flange thicknes of 9 mm and 12 mm were very large, whic h confirmed the high level of energy absorption of such structure s.

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Experiments and analysis of the post-buckling behaviors of aluminum alloy double layer space grids applying ball joints

  • Hiyama, Yujiro;Ishikawa, Koichiro;Kato, Shiro;Okubo, Shoji
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-304
    • /
    • 2000
  • This study discusses on the experimental and analytical results of the global buckling tests, carried out on aluminum alloy double layer space grids composed of tubular members, ball joints and connecting bolts at the member ends, with the purpose of demonstrating the effectiveness of a simplified analysis method using an equivalent slenderness ratio for the members. Because very few experiments have been carried out on this type of aluminum space grids, the buckling behavior is investigated experimentally over the post buckling regions using several space grid specimen with various values for the member slenderness ratio. The observed behavior duping the experiments is compared with the analytically obtained results. The comparison is made based on two different schemes; one on the plastic hinge method considering a bending moment-axial force interaction for members and the other on a method using an equivalent slenderness ratio. It is confirmed that the equivalent slenderness method can be effectively applied, even in the post buckling regions, once the effects of the rotational rigidity at the ball joints are appropriately evaluated, because the rigidity controls the buckling behavior. The effectiveness of the equivalent slenderness method will be widely utilized for estimation of the ultimate strength, even in post buckling regions for large span aluminum space grids composed of an extreme large number of nodes and members.