• 제목/요약/키워드: plastic architecture

검색결과 445건 처리시간 0.025초

라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계 (Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy)

  • 김은후;배종수;오성권
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

생활계 폐플라스틱 물질 재활용 제품의 품질안정화를 위한 기초 요인 검토 (Basic Factors for Quality Stability of Material Recycling Product Using Plastic Waste from Households)

  • 강석표;강혜주;신성철;김영식;이후석
    • 한국건설순환자원학회논문집
    • /
    • 제8권4호
    • /
    • pp.436-443
    • /
    • 2020
  • 다양한 복합재질 생활계 폐플라스틱의 물질재활용 확대를 위해서는 물질재활용 제품의 용도개발 및 이들의 품질 안정성 확보 노력이 필요하다. 본 논문에서는 생활계 폐플라스틱 물질재활용 제품의 품질에 대한 안정성을 확보하기 위한 기초 연구로서 발생지역에 따른 생활계 폐플라스틱의 혼입율 특성 및 이를 활용한 물질재활용 제품의 생산시기에 따른 품질특성을 비교 검토하였다. 그 결과 발생 도시에 따른 생활계 폐플라스틱 중 재활용 가능한 폐플라스틱의 구성비율은 64.5~90.4%로서 도시별 큰 차이를 보이고 있다. 또한 4개월간 생산시기별 물질재활용 제품의 평균 인장강도는 12.33MPa, 평균 연신율은 5.94%, 평균 밀도는 1.35g/㎤, 평균 회분은 3.66%인 것으로 나타났다.

비선형 해석에 의한 MRS 슬래브 단부 접합부의 모멘트 분포 연구 (Nonlinear Analysis for Negative Moment Distribution of MRS Slab End Joints)

  • 문정호;오영훈;임재형
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.177-184
    • /
    • 2011
  • 이 연구에서는 PC 구조의 단부를 연속으로 연결한 MRS(multi-ribbed moment resisting slab) 구조에 대한 해석 및 설계법을 제안하고자 하였다. MRS 구조에서는 더블티 부재가 역티보 위에서 부모멘트 철근에 의해서 연속으로 설계되므로, 부모멘트 철근이 좁은 지역에 밀집되는 문제가 발생할 수 있다. 따라서 선형 및 비선형 해석을 통하여 모멘트 분포 메커니즘을 분석하여, 적절한 설계법을 제시하였다. 또한 이 연구와 병행하여 실시한 실험 연구의 결과를 비선형상세 해석을 통하여 분석하였다. 그리고 단부구속효과 및 모멘트 재분배에 관한 연구를 위하여 비선형 골조 해석을 선택하여 변수별 연구를 수행하였다. 해석을 위한 재질 및 단면의 특성은 함께 진행된 실험 연구의 결과로부터 얻어졌으며, 비선형 골조 해석을 위한 소성힌지는 균열 모멘트, 공칭 모멘트, 부재 연성도 등의 값으로 모델링되었다. 선형 및 비선형 해석의 결과로부터 단부 회전 스프링과 부모멘트재분재를 통하여 MRS 구조의 단부 모멘트는 상당한 크기로 감소시킬 수 있음을 알 수 있었다.

조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain)

  • 정준모;심천식;김경수
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Experimental and numerical studies on cyclic behavior of continuous-tenon joints in column-and-tie timber construction

  • Qi, Liangjie;Xue, Jianyang;Xu, Dan
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.529-540
    • /
    • 2020
  • The mechanical properties of timber construction have drawn more attention after the 2013 Lushan earthquake. A strong desire to preserve this ancient architectural styles has sprung up in recent years, especially for residential buildings of the mountainous areas. In the column-and-tie timber construction, continuous-tenon joints are the most common structural form to connect the chuanfang (similar to the beam in conventional structures) and the column. To study the cyclic performance of the continuous-tenon joints in column-and-tie timber construction, the reversed lateral cyclic loading tests were carried out on three 3/4 scale specimens with different section heights of the chuanfang. The mechanical behavior was assessed by studying the ultimate bending capacity, deformation ductility and energy dissipation capacity. Test results showed that the slippage of chuanfang occurred when the specimens entered the plastic stage, and the slippage degree increased with the increase of the section height of chuanfang. An obvious plastic deformation of the chuanfang occurred due to the mutual squeezing between the column and chuanfang. A significant pinching was observed on the bending moment-rotation curves, and it was more pronounced as the section height of chuanfang increased. The further numerical investigations showed that the flexural capacity and initial stiffness of the continuous-tenon joints increased with the increase of friction coefficient between the chuanfang and the column, and a more obvious increasing of bending moment occurred after the material yielding. The compressive strength perpendicular to grain of the material played a more significant role in the ultimate bending capacity of continuous-tenon joints than the compressive strength parallel to grain.

패치로딩을 받는 알루미늄 합금 플레이트 거더의 최종강도 예측식 추정 (Ultimate Strength Prediction Formula Estimation of Aluminium Alloy Plate Girders Subjected to Patch Loading)

  • 오영철;서광철;고재용
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.543-551
    • /
    • 2015
  • 본 논문에서는 교량, 선박 등에 사용하고 해양환경을 고려한 알루미늄 합금(A6082-T-6) 플레이트 거더의 물리적 관계를 살펴보고자 한다. 플레이트 거더는 제품수명주기에 이동하중, 적재하중 등 같은 패치로딩을 경험하게 된다. 이 하중을 받는 알루미늄합금 플레이트 거더의 최종강도에 대해 다수 수치모형을 적용하여 탄소성 대변형 시리즈 해석을 수행하고 회귀분석을 통해 예측식을 제안하였다. 예측식은 최종강도와 세장변수의 상관관계로 나타냈으며 세장변수가 낮을 경우(0-2.3) 약 9 % 정도 오차가 발생하며 높을 경우(2.3-4.0) 약 1-2 % 정도 오차가 발생하였다. 따라서 제안 예측식 적정성은 합리적으로 평가할 수 있는 것으로 확인되었다.

r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성 (Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE)

  • 강석표;강혜주;김상진;신성철;이민희
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.425-432
    • /
    • 2021
  • 본 논문은 생활계 복합재질 폐플라스틱을 재활용한 물질재활용 제품의 물성을 향상시키기 위한 방안으로서 단일 재질 폐플라스틱인 r-LDPE(Recycled Low Density Polyethylene, r-LDPE) 사용량을 변화시켜 물질재활용 제품의 물성을 평가·분석하였다. 그 결과 r-LDPE 사용량이 증가할수록 생활계 복합재질 폐플라스틱 물질재활용 제품의 인장강도, 연신율은 증가하는 경향을 나타내었지만 회분은 감소하는 경향을 나타내었다. 생활계 복합재질 폐플라스틱 재생원료에 r-LDPE 사용량을 5% 이상 혼입 사용할 경우 생활계 복합재질 폐플라스틱의 물질재활용 제품인 인삼재배시설용 지주대의 품질기준인 GR M 3093-2021을 안정적으로 만족시키는 것으로 나타났다.

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.