DOI QR코드

DOI QR Code

Basic Factors for Quality Stability of Material Recycling Product Using Plastic Waste from Households

생활계 폐플라스틱 물질 재활용 제품의 품질안정화를 위한 기초 요인 검토

  • Kang, Suk-Pyo (Department of Architecture, Woosuk University) ;
  • Kang, Hye-Ju (Department of Construction Engineering, Woosuk University) ;
  • Shin, Sung-Chul (ESR Industrial Co., Ltd.) ;
  • Kim, Young-Sik (Korea Recycle Plastic Manufacturing Cooperative) ;
  • Lee, Hoo-Seok (Korea Conformity Laboratories, Chungcheong Division, Daejeon & Chungnam Branch, Head of Branch)
  • 강석표 (우석대학교 건축학과) ;
  • 강혜주 (우석대학교 건설공학과) ;
  • 신성철 ((주)이에스알산업) ;
  • 김영식 (한국재생플라스틱제조업협동조합) ;
  • 이후석 ((재)한국건설생활환경시험연구원 충청사업본부 대전충남지원)
  • Received : 2020.10.06
  • Accepted : 2020.10.28
  • Published : 2020.12.30

Abstract

In this paper, we tried to examine the composition ratio of plastic waste from households according to the generated city and the qualities according to the production time of material recycling products. As a result, the composition ratio of recyclable plastic waste among the total plastic waste according to the generated cities is 64.5~90.4%, showing a big difference by city. In addition, the quality evaluation of material recycling products by production time for four months showed that the average tensile strength was 12.33MPa, the average elongation rate was 5.94%, the average density was 1.35g/㎤ and the average ash content was 3.66%.

다양한 복합재질 생활계 폐플라스틱의 물질재활용 확대를 위해서는 물질재활용 제품의 용도개발 및 이들의 품질 안정성 확보 노력이 필요하다. 본 논문에서는 생활계 폐플라스틱 물질재활용 제품의 품질에 대한 안정성을 확보하기 위한 기초 연구로서 발생지역에 따른 생활계 폐플라스틱의 혼입율 특성 및 이를 활용한 물질재활용 제품의 생산시기에 따른 품질특성을 비교 검토하였다. 그 결과 발생 도시에 따른 생활계 폐플라스틱 중 재활용 가능한 폐플라스틱의 구성비율은 64.5~90.4%로서 도시별 큰 차이를 보이고 있다. 또한 4개월간 생산시기별 물질재활용 제품의 평균 인장강도는 12.33MPa, 평균 연신율은 5.94%, 평균 밀도는 1.35g/㎤, 평균 회분은 3.66%인 것으로 나타났다.

Keywords

References

  1. Choi, Y., Choi, H.J., Rhee, S.H. (2018). Current status and improvements on management of plastic waste in Korea, Journal of the Korean Institute of Resources Recycling, 27(4), 3-15 [in Korean]. https://doi.org/10.7844/KIRR.2018.27.4.3
  2. Dhawan, R., Bisht, B.M.S., Kumar, R., Kumari, S., Dhawan, S.K. (2019). Recycling of plastic waste into tiles with reduced flammability and improved tensile strength, Process Safety and Environmental Protection, 124, 299-307. https://doi.org/10.1016/j.psep.2019.02.018
  3. Geyer, R., Jambeck, J.R., Law, K.L. (2017). Production, use, and fate of all plastics ever made, Science Advances, 3(7), 1-5.
  4. Jang, Y.C., Lee, G., Kwon, Y., Lim, J.H., Jeong, J.H. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea, Resources, Conservation and Recycling, 158, 104798. https://doi.org/10.1016/j.resconrec.2020.104798
  5. Keskisaari, A., K rki, T., Vuorinen, T. (2019). Mechanical properties of rec yc led polymer composites made from side-stream materials from different industries, Sustainability, 11(21), 6054. https://doi.org/10.3390/su11216054
  6. Ko, E., Shim, W., Lee, H., Kang, W., Shin, J., Kwon, O., Kim, J. (2018). The Current status of recycling process and problems of recycling according to the packaging waste of Korea, Korean Journal of Packaging Science & Technology, 24(2), 65-71 [in Korean]. https://doi.org/10.20909/kopast.2018.24.2.65
  7. Lee, S.H. (2019). Current Status of Plastic Recycling in Korea, Journal of the Korean Institute of Resources Recycling, 28(6), 3-8 [in Korean].
  8. Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L., Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications, Composites Part B: Engineering, 115, 409-422. https://doi.org/10.1016/j.compositesb.2016.09.013