• 제목/요약/키워드: plasmid depletion

검색결과 8건 처리시간 0.019초

Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay

  • Chen, Chaoqun;Zhong, Guangming;Ren, Lin;Lu, Chunxue;Li, Zhongyu;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1621-1628
    • /
    • 2015
  • Chlamydia possesses a conserved 7.5 kb plasmid that is known to play an important role in chlamydial pathogenesis, since some chlamydial organisms lacking the plasmid are attenuated. The chlamydial transformation system developed recently required the use of plasmid-free organisms. Thus, the generation and identification of plasmid-free organisms represent a key step in understanding chlamydial pathogenic mechanisms. A tricolor immunofluorescence assay for simultaneously detecting the plasmid-encoded Pgp3 and whole organisms plus DNA staining was used to screen C. muridarum organisms selected with novobiocin. PCR was used to detect the plasmid genes. Next-generation sequencing was then used to sequence the genomes of plasmid-free C. muridarum candidates and the parental C. muridarum Nigg strain. We generated five independent clones of plasmid-free C. muridarum organisms by using a combination of novobiocin treatment and screening plaque-purified clones with anti-Pgp3 antibody. The clones were confirmed to lack plasmid genes by PCR analysis. No GlgA protein or glycogen accumulation was detected in cells infected with the plasmid-free clones. More importantly, whole-genome sequencing characterization of the plasmid-free C. muridarum organism and the parental C. muridarum Nigg strain revealed no additional mutations other than loss of the plasmid in the plasmid-free C. muridarum organism. Thus, the Pgp3-based immunofluorescence assay has allowed us to identify authentic plasmid-free organisms that are useful for further investigating chlamydial pathogenic mechanisms.

Effect of Galactose and Dextrose on Human Lipocortin I Expression in Recombinant Saccharomyces cerevisiae Carrying Galactose-Regulated Expression System

  • Nam, Soo-Wan;Seo, Dong-Jin;Rhee, Sang-Ki;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권3호
    • /
    • pp.168-173
    • /
    • 1993
  • The expression kinetics of human lipocortin I (LCI), a potential anti-inflammatory agent, was studied in the shake-flask and fermenter cultures of Saccharomyces cerevisiae carrying a galactose-inducible expression system. The cell growth, expression level of LCI, and the plasmid stability were investigted under various galactose induction conditions. The expression of LCI was repressed by the presence of a very small amount of dextrose in the culture medium, but it was induced by galactose after dextrose became completely depleted. The optimal ratio of dextrose to galactose for lipocortin I production was found to be 1.0 (10 g/l dextrose and 10 g/l galactose). With optimal D/G ratio of 1.0 and the addition of galactose prior to dextrose depletion, LCI of about 100~130 mg/l was produced. LCI at a concentration of 174 mg/l was porduced in the fed-batch culture, which was nearly a twice as much of that produced in the batch culture. The plasmid stability was very high in all culture cases, and thus was considered to be not an important parameter in the expression of LCI.

  • PDF

Sacharomyces cerevisiae에서 GAL또는 GAP 프로모터 조절에 의한 재조합 Inulinase의 발현 및 분비 (Expression and Secretion of Recombinant Inulinase under the Control of GAL or GAP Promoter in Sacharomyces cerevisiae)

  • 남수완;임현정정봉현장용근
    • KSBB Journal
    • /
    • 제11권4호
    • /
    • pp.445-452
    • /
    • 1996
  • 본 연구에서는 GALl, GALl, GALlO 및 GAP promoter 하류에 reporter 유전자인 K. marxianus의 inulinase 유전자(lNUl)를 연결하여 각각의 재조합 plasmid들을 구축하고, 이들로 형질전환된 S. cerevrswe를 회분배양(YPOG 배지 )하여 외래 유전자 발현에 미치는 promoter의 영향을 비교.검토하 였다. 재조합 효모의 최종 균체농도는 36-39 00600 값을 보여 promoter에 따른 큰 차이를 보이지 않았으나, 포도당 소모기간 동안 비증식속도는 평균 $0.24 h^{-1}$로 유지되다가 galactose 소모기간 동안에 GAL promoter 함유 효모배양의 경우 $0.04-0.06 h^{-1}$, pYIGP 함유 재조합 효모배양은 $0.10 h^{-1}$로 감소하였다. 포도당 고갈 후 inulinase 발현은 시작되었고 균체외 inulinase의 발현 수준은 배양 72시간에 4.3 (GALl promoter), 4.0 (GAL7 promoter), 3.8 (GAL10 promoter) 및 1.6 (GAP promoter) unit/mL에 도달하였다. 평판배지상에서의 활성염색과 회분배양의 결과(최종발현양 및 초기 inulinase 말현속도), inulinase 발현에 미치는 promoter 세기 는 GALl > GALlO > GAL7 > GAP 순임을 알 수 있었다. GAL promoter가 배양말기까지 78 % 이상의 높은 plasmid 안정성을 보인 반면에, GAP promoter의 경우 55%의 낮은 plasmid 안정성을 보였다. 또한, 재조합 inulinase는 promoter 종류에 상관없이 98% 이상 배양액으로 분비되였다.

  • PDF

테스토스테론 물질 검출을 위한 in vitro TCD 시스템 구축 (Establishment of an In Vitro TCD (Testosterone Compound Detection) System)

  • 이동근;조정권;이상현
    • 생명과학회지
    • /
    • 제29권10호
    • /
    • pp.1159-1163
    • /
    • 2019
  • 남성호르몬 감소와 관련된 남성갱년기에 대한 관심이 고조되고 있지만, 남성호르몬의 정량을 위해 항체를 이용하는 고가의 kit가 이용되고 있다. 본 연구에서는 in vitro 전사 활성 시험법을 이용하여 남성 스테로이드호르몬의 활성 혹은 농도를 검증하는 시스템을 구축하였다. 테스토스테론-AR (androgen receptor) 복합체와 반응하는 ARE-AdE1bTATA 염기서열이 삽입되고 리포터로 luciferase를 발현하는 테스토스테론 유사활성 검증 리포터 플라스미드인 pGL2-Neo-ARE-AdE1BTATA를 제조하고, 인체 전립선암 세포인 LNcap-LN3 세포에 stable transfection을 실시하였다. 구축된 LNcap-LN3/pGL2-Neo-ARE-AdE1BTATA TCD (testosterone compound detection) 시스템은 표준물질인 테스토스테론의 $10^{-13}{\sim}10^{-8}M$ 범위에서 농도 증가에 비례하는 정량성을 보였다. 이 연구에서 확립된 in vitro TCD 시스템을 이용하면 천연물 유래 테스토스테론 유사물질 및 테스토스테론 저하물질의 대량 탐색 등이 가능할 것이므로, 건강기능성 식품이나 의약품 신소재의 개발에 기여할 것이다.

SIRT1 Suppresses Activating Transcription Factor 4 (ATF4) Expression in Response to Proteasome Inhibition

  • Woo, Seon Rang;Park, Jeong-Eun;Kim, Yang Hyun;Ju, Yeun-Jin;Shin, Hyun-Jin;Joo, Hyun-Yoo;Park, Eun-Ran;Hong, Sung Hee;Park, Gil Hong;Lee, Kee-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1785-1790
    • /
    • 2013
  • The synthetic machinery of ATF4 (activating transcription factor 4) is activated in response to various stress conditions involved in nutrient restriction, endoplasmic reticulum homeostasis, and oxidation. Stress-induced inhibition of proteasome activity triggers the unfolded protein response and endoplasmic reticulum stress, where ATF4 is crucial for consequent biological events. In the current study, we showed that the $NAD^+$-dependent deacetylase, SIRT1, suppresses ATF4 synthesis during proteasome inhibition. SIRT1 depletion via transfection of specific siRNA into HeLa cells resulted in a significant increase in ATF4 protein, which was observed specifically in the presence of the proteasome inhibitor MG132. Consistent with SIRT1 depletion data, transient transfection of cells with SIRT1-overexpressing plasmid induced a decrease in the ATF4 protein level in the presence of MG132. Interestingly, however, ATF4 mRNA was not affected by SIRT1, even in the presence of MG132, indicating that SIRT1-induced suppression of ATF4 synthesis occurs under post-transcriptional control. Accordingly, we propose that SIRT1 serves as a negative regulator of ATF4 protein synthesis at the post-transcriptional level, which is observed during stress conditions, such as proteasome inhibition.

Towards Methionine Overproduction in Corynebacterium glutamicum - Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources

  • Bolten, Christoph J.;Schroder, Hartwig;Dickschat, Jeroen;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권8호
    • /
    • pp.1196-1203
    • /
    • 2010
  • In the present work, methanethiol and dimethyldisulfide were investigated as sulfur sources for methionine synthesis in Corynebacterium glutamicum. In silico pathway analysis predicted a high methionine yield for these reduced compounds, provided that they could be utilized. Wild-type cells were able to grow on both methanethiol and dimethyldisulfide as sole sulfur sources. Isotope labeling studies with mutant strains, exhibiting targeted modification of methionine biosynthesis, gave detailed insight into the underlying pathways involved in the assimilation of methanethiol and dimethyldisulfide. Both sulfur compounds are incorporated as an entire molecule, adding the terminal S-$CH_3$ group to O-acetylhomoserine. In this reaction, methionine is directly formed. MetY (O-acetylhomoserine sulfhydrylase) was identified as the enzyme catalyzing the reaction. The deletion of metY resulted in methionine auxotrophic strains grown on methanethiol or dimethyldisulfide as sole sulfur sources. Plasmid-based overexpression of metY in the ${\Delta}$metY background restored the capacity to grow on methanethiol or dimethyldisulfide as sole sulfur sources. In vitro studies with the C. glutamicum wild type revealed a relatively low activity of MetY for methanethiol (63 mU/mg) and dimethyldisulfide (61 mU/mg). Overexpression of metY increased the in vitro activity to 1,780 mU/mg and was beneficial for methionine production, since the intracellular methionine pool was increased 2-fold in the engineered strain. This positive effect was limited by a depletion of the metY substrate O-acetylhomoserine, suggesting a need for further metabolic engineering targets towards competitive production strains.

Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction

  • Lee, Da-Bin;Kim, Do-Hyung;Je, Jae-Young
    • Preventive Nutrition and Food Science
    • /
    • 제20권1호
    • /
    • pp.22-28
    • /
    • 2015
  • Phenolic rich ethyl acetate fraction (EAF) from lotus leaves was prepared and its bioactive components, antioxidant and cytoprotective effects were investigated. EAF showed high total phenolic content and flavonoid content and contained rutin ($11,331.3{\pm}4.5mg/100g\;EAF$), catechin ($10,853.8{\pm}5.8mg/100g\;EAF$), sinapic acid ($1,961.3{\pm}5.6mg/100g\;EAF$), chlorogenic acid ($631.9{\pm}2.3mg/100g\;EAF$), syringic acid ($512.3{\pm}2.5mg/100g\;EAF$), and quercetin ($415.0{\pm}2.1mg/100g\;EAF$). EAF exerted the $IC_{50}$ of $4.46{\mu}g/mL$ and $5.35{\mu}g/mL$ toward DPPH and ABTS cation radicals, respectively, and showed strong reducing power, which was better than that of ascorbic acid, a positive control. Additionally, EAF protected hydroxyl radical-induced DNA damage indicated by the conversion of supercoiled pBR322 plasmid DNA to the open circular form and inhibited lipid peroxidation of polyunsaturated fatty acid in a linoleic acid emulsion. In cultured hepatocytes, EAF exerted a cytoprotective effect against oxidative stress by inhibiting intracellular reactive oxygen species formation and membrane lipid peroxidation. In addition, depletion of glutathione under oxidative stress was remarkably restored by treatment with EAF. The results suggest that EAF have great potential to be used against oxidative stress-induced health conditions.

SUC2 Gene을 갖는 재조합 Saccharomyces cerebisiae의 Invertase 발현특성 (Expression of Invertase in Recombinant Saccharomyces cerebisiae Containing SUC2 Gene)

  • 정상철;장재권;김인규;변유량
    • 한국미생물·생명공학회지
    • /
    • 제17권3호
    • /
    • pp.263-268
    • /
    • 1989
  • 유전자의 재조합 균주의 생산성을 향상시키기 위한 발효시스템 개발을 목적으로 regulated promoter 인 SUC2 gene 갖는 유전자 재조합 S. cerebisiae를 모델로하여 유전자 산물인 Invertase 발현에 미치는 글루코오스 농도의 영향, 발효 중 플라스미드의 불안정성, 생육특성 및 continuous fed batch system을 연구하였다. 유전자 재조합 균주는 biphasic growth 현상을 보였으며 글루코오스 농도가 0.9g/$\ell$에서 2.2g/L로 증가함에 따라 비증식 속도는 0.224 h$^{-1}$에서 0.226 h$^{-1}$로 증가했으며 숙주효모보다 낮은 값을 나타내었다. 유전자 재조합 균주의 invertase 생산은 발효조내의 글루코오스 농도에 크게 영향을 받아 글루코오스 농도가 0.25~0.4g/L로 감소될 때 invertase 생산이 시작되었으며 회분발효중 플라스미드의 분리는 글루코오스 자화기간 동안에 빈번히 일어났으나 에탄을 자화기간에는 완만해지는 경향을 보였다. 또한 통기를 해주지 않고 배지의 용존산소만으로 배양시킨 결과 통기를 한 경우에 비하여 invertase의 비활성과 총활성이 각각 1.5 및 1.3 배 증가되었다. 균체의 증식단계와 유전자의 발현단계로 구분하여 발효시키기 위하여 영양분을 함유한 글루코오스 용액을 48m1/h(0.096g 글루코오스/48L의 유량으로 12시간 연속적으로 공급하여 fed batch 배양한 결과 invertase의 비활성과 총활성이 비통기적 회분배양 보다 각각 1.74, 2.74배 증가되었다.

  • PDF