Browse > Article
http://dx.doi.org/10.4014/jmb.1002.02018

Towards Methionine Overproduction in Corynebacterium glutamicum - Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources  

Bolten, Christoph J. (Biochemical Engineering Institute, Technische Universitat Braunschweig)
Schroder, Hartwig (BASF SE, Research Fine Chemicals and Biotechnology)
Dickschat, Jeroen (Organic Chemistry Institute, Technische Universitat Braunschweig)
Wittmann, Christoph (Biochemical Engineering Institute, Technische Universitat Braunschweig)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.8, 2010 , pp. 1196-1203 More about this Journal
Abstract
In the present work, methanethiol and dimethyldisulfide were investigated as sulfur sources for methionine synthesis in Corynebacterium glutamicum. In silico pathway analysis predicted a high methionine yield for these reduced compounds, provided that they could be utilized. Wild-type cells were able to grow on both methanethiol and dimethyldisulfide as sole sulfur sources. Isotope labeling studies with mutant strains, exhibiting targeted modification of methionine biosynthesis, gave detailed insight into the underlying pathways involved in the assimilation of methanethiol and dimethyldisulfide. Both sulfur compounds are incorporated as an entire molecule, adding the terminal S-$CH_3$ group to O-acetylhomoserine. In this reaction, methionine is directly formed. MetY (O-acetylhomoserine sulfhydrylase) was identified as the enzyme catalyzing the reaction. The deletion of metY resulted in methionine auxotrophic strains grown on methanethiol or dimethyldisulfide as sole sulfur sources. Plasmid-based overexpression of metY in the ${\Delta}$metY background restored the capacity to grow on methanethiol or dimethyldisulfide as sole sulfur sources. In vitro studies with the C. glutamicum wild type revealed a relatively low activity of MetY for methanethiol (63 mU/mg) and dimethyldisulfide (61 mU/mg). Overexpression of metY increased the in vitro activity to 1,780 mU/mg and was beneficial for methionine production, since the intracellular methionine pool was increased 2-fold in the engineered strain. This positive effect was limited by a depletion of the metY substrate O-acetylhomoserine, suggesting a need for further metabolic engineering targets towards competitive production strains.
Keywords
NADPH; O-acetylhomoserine sulfhydrylase; metY; metabolic engineering;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kromer, J. O., E. Heinzle, H. Schröder, and C. Wittmann. 2006. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J. Bacteriol. 188: 609-618.   DOI   ScienceOn
2 Bolten, C. J., P. Kiefer, F. Letisse, J. C. Portais, and C. Wittmann. 2007. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79: 3843-3849.   DOI   ScienceOn
3 Kiefer, P., E. Heinzle, O. Zelder, and C. Wittmann. 2004. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl. Environ. Microbiol. 70: 229-239.   DOI   ScienceOn
4 Becker, J., C. Klopprogge, A. Herold, O. Zelder, C. J. Bolten, and C. Wittmann. 2007. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum - over expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109.   DOI   ScienceOn
5 Foglino, M., F. Borne, M. Bally, G. Ball, and J. C. Patte. 1995. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141: 431-439.   DOI   ScienceOn
6 Dickschat, J. S., T. Martens, T. Brinkhoff, M. Simon, and S. Schulz. 2005. Volatiles released by a Streptomyces species isolated from the North Sea. Chem. Biodivers. 2: 837-865.   DOI   ScienceOn
7 Flavin, M. and C. Slaughter. 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim. Biophys. Acta 132: 400-405.   DOI   ScienceOn
8 Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596.   DOI   ScienceOn
9 Bonnarme, P., L. Psoni, and H. E. Spinnler. 2000. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl. Environ. Microbiol. 66: 5514-5517.   DOI   ScienceOn
10 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
11 Becker, J., C. Klopprogge, H. Schröder, and C. Wittmann. 2009. Tricarboxylic acid cycle engineering for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 7866-7869.   DOI   ScienceOn
12 Wittmann, C. 2007. Fluxome analysis using GC-MS. Microb. Cell Fact 6: 6.   DOI
13 Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287.   DOI   ScienceOn
14 Wittmann, C., J. O. Krömer, P. Kiefer, T. Binz, and E. Heinzle. 2004. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem. 327: 135-139.   DOI   ScienceOn
15 Yamagata, S. 1971. Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. J. Biochem. (Tokyo) 70: 1035-1045.   DOI
16 Mondal, S., Y. B. Das, and S. P. Chatterjee. 1996. Methionine production by microorganisms. Folia Microbiol. (Praha) 41: 465-472.   DOI   ScienceOn
17 Park, S. D., J. Y. Lee, S. Y. Sim, Y. Kim, and H. S. Lee. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336.   DOI   ScienceOn
18 Wittmann, C. and J. Becker. 2007. The L-lysine story: From metabolic pathways to industrial production. Microbiol. Monogr. 5: 39-70.   DOI
19 Lee, H. S. and B. J. Hwang. 2003. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: Parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol. 62: 459-467.   DOI   ScienceOn
20 Lee, H. S. 2005. Sulfur metabolism and its regulation, pp. 351- 376. In L. Eggeling and M. Bott (eds.). Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton.
21 Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173.   DOI   ScienceOn
22 Mampel, J., H. Schröder, S. Haefner, and U. Sauer. 2005. Single-gene knockout of a novel regulatory element confers methionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 68: 228-236.   DOI   ScienceOn
23 Mondal, S., Y. B. Das, and S. P. Chatterjee. 1994. Improvement of L-methionine production by double auxotrophic mutants of Brevibacterium heali LT5 and LT18. Res. Ind. 39: 239-241.
24 Kromer, J. O., C. J. Bolten, E. Heinzle, H. Schröder, and C. Wittmann. 2008. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154: 3917-3930.   DOI   ScienceOn
25 Iwatani, S., S. Van Dien, K. Shimbo, K. Kubota, N. Kageyama, D. Iwahata, et al. 2007. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J. Biotechnol. 128: 93-111.   DOI   ScienceOn
26 Kromer, J. O., C. Wittmann, H. Schröder, and E. Heinzle. 2006. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab. Eng. 8: 353-369.   DOI   ScienceOn
27 Kanzaki, H., M. Kobayashi, T. Nagasawa, and H. Yamada. 1987. Purification and characterization of cystathionine γ- synthase type II from Bacillus sphaericus. Eur. J. Biochem. 163: 105-112.   DOI   ScienceOn
28 Kiene, R. P., L. J. Linn, J. Gonzalez, M. A. Moran, and J. A. Bruton. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65: 4549-4558.
29 Hwang, B. J., H. J. Yeom, Y. Kim, and H. S. Lee. 2002. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J. Bacteriol. 184: 1277-1286.   DOI   ScienceOn
30 Ikeda, M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
31 Dickschat, J. S., H. B. Bode, S. C. Wenzel, R. Muller, and S. Schulz. 2005. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6: 2023-2033.   DOI   ScienceOn