• Title/Summary/Keyword: plasma-chemical reactor

Search Result 143, Processing Time 0.034 seconds

Etching Characteristics of Au Film using Capacitively Coupled CF4/Ar Plasma

  • Kim, Gwang-Beom;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.82
    • /
    • pp.1-4
    • /
    • 2007
  • In this paper, the etching of Au films using photoresist masks on Si substrates was investigated using a capacitively coupled plasma etch reactor. The advantages of plasma etch techniques over current methods for Au metalization include the ability to simplify the metalization process flow with respect to resist lift-off schemes, and the ability to cleanly remove etched material without sidewall redeposition, as is seen in ion milling. The etch properties were measured for different gas mixing ratios of CF4/Ar, and chamber pressures while the other conditions were fixed. According to statistical design of experiment (DOE), etching process of Au films was characterized and also 20 samples were fabricated followed by measuring etch rate, selectivity and etch profile. There is a chemical reaction between CF4 and Au. Au- F is hard to remove from the surface because of its high melting point. The etching products can be sputtered by Ar ion bombardment.

A Study on ther Water Plasma Chemical Process Discharge by Pulse Power Supply (펄스전원을 이용한 수중플라즈마 방전에 관한 연구)

  • Shin, Wan-Ho;Hong, Won-Seok;Yoo, Hyo-Yol;Park, Sun-Soon;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2179-2181
    • /
    • 2005
  • An experimental study on the water plasma characteristics of removal efficiency for organic contaminants in dye waste water has been investigated. In this study, dielectric barrier discharging electrodes with round shape have disposed cross each other in reactor, and pulse power was supplied to between each electrodes. Its output pulse voltage range is from 0[V] to 30[kV] and output frequency range is from 100[Hz] to 2[kHz]. Using proposed system, High frequency discharge is tested in the mixed Tone(air and water) and the space distribution of streamer corona plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

Effects of Oxygen Plasma Treatment on the Wettability of Polypropylene Fabrics

  • Kwon, Young Ah
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.456-461
    • /
    • 2014
  • The objective of this study is to give PP(polypropylene) fabric a good affinity for water. Oxygen plasma was treated to PP fabrics in a commercial glow discharge reactor with different RF power, discharge pressure, and reaction time. The PP fiber surfaces were characterized by the measurement of contact angle and ESCA. A JEOL scanning electron microscope was used to observe the surface morphology of fibers. The spontaneous water uptake amount of PP fabrics was determined by the demand wettability test. To determine the effect of aging on the surface properties of $O_2$ plasma treated PP, all the above measurements of the samples were carried out after 1, 7, 30, 60, and 150 days. The results are as follows. The PP fiber surfaces treated by $O_2$ plasma treatment have a chemical composition that consisted of various oxygen containing polar groups. Consequently, the contact angles of the treated PP fibers decreased, which improved the water uptake rate of PP fabrics. Surface roughness of the treated PP affected the fabric wettabiity as well. Wettability of the treated PP decreased and leveled off with aging. The $O_2$ plasma treatment is a simple and effective method to increase the water uptake rate of PP fabrics.

Chlorodifluoromethane (CHClF2) Thermal Decomposition by DC Nitrogen Plasma (질소 플라즈마 공정을 이용한 염화이불화메탄(CHClF2) 열분해)

  • Ko, Eun Ha;Yoo, Hyeonseok;Jung, Yong-An;Park, Dong-Wha;Kim, Dong-Wook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-176
    • /
    • 2017
  • The nitrogen plasma thermal decomposition and recovery processes for $CHClF_2$ (Chlorodifluoromethane) refringent were investigated. The steam generator was employed to provide superheated steam reactor, supporting the decomposition reaction of refringent. Even though over 94% of R-22 was decomposed on the condition of 60 A and 9.0 kW, a higher power and specific energy density were required to achieve the complete combustion of carbon materials. In the operating condition of 60 A and 12.6 kW, $O_2$/R-22 ratio in reactants gases are a key factor to obtain much higher decomposition ratio during process. It should be noticed that injecting the mixture of $O_2$ and air was much more effective than injecting the air consisting equivalent $O_2$ amount.

Adhesion Enhancement of Polyurethane Foam Using Atmospheric Plasma (II) (대기압 플라즈마를 이용한 폴리우레탄 소재의 접착력 향상 (II))

  • Sim, Dong Hyun;Seul, Soo Duk;Oh, Sang Taek
    • Journal of Adhesion and Interface
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 2007
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam to improve its contact angle and adhesion. In order to investigate the optimum reaction condition of plasma treatment, type of reaction gas (nitrogen, argon, oxygen, air), rate of gas flow (30~150 mL/min), and reaction time (0~30 sec) were examined in a plate plasma reactor. Also, the effects were compared to those of a conventional vacuum plasma pre-treatment system. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of polyurethane foam, the greatest adhesion strength was achieved at a flow rate of 100 mL/min and at a reaction time of 10s for N2 gas. Consequently, the atmospheric plasma treatment reduced the contact angle of the polyurethane foam and also resulted in the improvement of the peel strength.

  • PDF

Reduction of surface roughness during high speed thinning of silicon wafer

  • Heo, W.;Ahn, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.392-392
    • /
    • 2010
  • In this study, high-speed chemical dry thinning process of Si wafer and evolution of surface roughness were investigated. Direct injection of NO gas into the reactor during the supply of F radicals from $NF_3$ remote plasmas was very effective in increasing the Si thinning rate due to the NO-induced enhancement of surface reaction but thinned Si surface became roughened significantly. Addition of Ar gas, together with NO gas, decreased root mean square (RMS) surface roughness of thinned Si wafer significantly. The process regime for the thinning rate enhancement with reduced surface roughness was extended at higher Ar gas flow rate. Si wafer thinning rate as high as $22.8\;{\mu}m/min$ and root-mean-squared (RMS) surface roughness as small as 0.75 nm could be obtained. It is expected that high-speed chemical dry thinning process has possibility of application to ultra-thin Si wafer thinning with no mechanical damage.

  • PDF

Synthesis of Silver Nano-particles by the Solution Plasma Sputtering Method (유체 플라즈마 방식을 사용한 은 나노파티클의 합성)

  • Yoo, Seung-cheol;Shin, Hong-Jik;Choi, Won Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.216-218
    • /
    • 2016
  • In this study, we used not chemical and physical synthesis method but the solution plasma sputtering method in the synthesis of silver nano-particles. Synthesis of all the silver nano-particles was conducted for 1hour in 360 ml of distilled water and characteristics of changing the input voltage and frequency of the synthesised silver nano-particles by using the solution plasma sputtering method were analyzed through FE-SEM(Field Emission-Scanning Electron Microscope). We changed the input voltage from 8 kV to 10 kV in steps of 1 kV, input frequency from 20 kHz to 30 kHz in steps of 5 kHz in the solution plasma reactor with the advanced device which can control the DC voltage and frequency. We confirmed that the size of silver nano-particles were larger according to the change of the input voltage and frequency.

A Study on Characteristics of NOx and Ozone by Plasma Reaction (Plasma반응에 의한 NOx와 Ozone의 특성에 관한 연구)

  • Choi Jae Wook;Yamaguma Mizuki;Choi Jae Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.1-6
    • /
    • 2000
  • In this experiment, we made the plasma reactor which adhere needle electrode in order to treat safely an NOx which was included in the gas. Also we experimently investigated characteristics of equipment and inspected efficiency. As a reaction gas, by using mixture gas of $NO/N_2$ and $N_2/O_2$, we setted up initial NO concentration and gas flow rate was set at 2 ${\iota}$/min. As a reaction characteristics of NOx, when discharge input power was high, NO concentration decreased and when the oxygen concentration increased, the NO decomposition was easy and decomposition energy efficiency was high. Also in case that NO concentration increased, NO decomposition energy efficiency was high but decomposition rate was low. The characteristics of ozone, when discharge input power was high, ozone increased and when $NO/N_2$ concentration increased, the ozone decreased.

  • PDF

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan-Ho;Kim, Sang-Hoon;Reddy, A.S.;Ha, H.;Park, Jeong-Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.245-245
    • /
    • 2012
  • Syntheses of oxide supported metal catalysts by wet-chemical routes have been well known for their use in heterogeneous catalysis. However, uniform deposition of metal nanoparticles with controlled size and shape on the support with high reproducibility is still a challenge for catalyst preparation. Among various synthesis methods, arc plasma deposition (APD) of metal nanoparticles or thin films on oxide supports has received great interest recently, due to its high reproducibility and large-scale production, and used for their application in catalysis. In this work, Au and Pt nanoparticles with size of 1-2 nm have been deposited on titania powder by APD. The size of metal nanoparticles was controlled by number of shots of metal deposition and APD conditions. These catalytic materials were characterized by x-ray diffraction (XRD), inductively coupled plasma (ICP-AES), CO-chemisorption and transmission electron microscopy (TEM). Catalytic activity of the materials was measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. We found that Au/$TiO_2$ is reactive, showing 100% conversion at $110^{\circ}C$, while Pt/$TiO_2$ shows 100% conversion at $200^{\circ}C$. High activity of metal nanoparticles suggests that APD can be used for large scale synthesis of active nanocatalysts. We will discuss the effect of the structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

A Study on the molecular structure and molecular weight control of styrene films by plasma polymerization (플라즈마 중합법에 의한 스티렌 박막의 분자 구조 및 분자량 제어에 관한 연구)

  • 김종택;최충양;박종관;박응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1997
  • The plasma polymerized styrene films were prepared by using an inter-electrode capacitively coupled gas-flow-type reactor, and the effects of plasma polymerization condition on the molecular weight distribution were investigated by Fourier Transform Infrared (FT-IR), Pyrolysis Gas Chromatography(PyGC), Differential Scanning Calorimetry(DSC) and Gel Permeation Chromatography(GPC). From the above results, the very cross-linked films different from chemical characteristics of the starting monomer were taken out, and it is realized that the molecular structure, cross linking density, and molecular weight distribution could be controlled by changing the parameters such as deposition pressure, deposition power and gas flow rate. Accordingly, it is suggested that plasma polymerization method performed by inter-electrode capacitively coupled gas-flow-type reactor has good characteristics for manufacturing the functional organic thin films which can be applied in sensors, opto-electric device, photo-resist by changing the polymerization parameters.

  • PDF