Browse > Article
http://dx.doi.org/10.14478/ace.2016.1123

Chlorodifluoromethane (CHClF2) Thermal Decomposition by DC Nitrogen Plasma  

Ko, Eun Ha (Department of Chemical Engineering (BK21 plus program), Inha University)
Yoo, Hyeonseok (Department of Chemical Engineering (BK21 plus program), Inha University)
Jung, Yong-An (Chemical Analysis Center, Korea Testing Certification)
Park, Dong-Wha (Department of Chemical Engineering (BK21 plus program), Inha University)
Kim, Dong-Wook (Department of Chemical Engineering (BK21 plus program), Inha University)
Choi, Jinsub (Department of Chemical Engineering (BK21 plus program), Inha University)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 171-176 More about this Journal
Abstract
The nitrogen plasma thermal decomposition and recovery processes for $CHClF_2$ (Chlorodifluoromethane) refringent were investigated. The steam generator was employed to provide superheated steam reactor, supporting the decomposition reaction of refringent. Even though over 94% of R-22 was decomposed on the condition of 60 A and 9.0 kW, a higher power and specific energy density were required to achieve the complete combustion of carbon materials. In the operating condition of 60 A and 12.6 kW, $O_2$/R-22 ratio in reactants gases are a key factor to obtain much higher decomposition ratio during process. It should be noticed that injecting the mixture of $O_2$ and air was much more effective than injecting the air consisting equivalent $O_2$ amount.
Keywords
$CHClF_2$; R-22; thermal plasma; thermal decomposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Walrevens and J. Newman, Risk Assessment of Illegal Trade in HCFCs, pp. 3-13, United Nations Environment Programme (UNEP) (2011).
2 G. Angelinoa and C. Invernizzib, Experimental investigation on the thermal stability of some new zero ODP refrigerants, Int. J. Refrig., 26, 51-58 (2003).   DOI
3 H. Yu, E. M. Kennedy, A. A. Adesina, and B. Z. Dlugogorski, A review of CFC and halon treatment technologies - The nature and role of catalysts, Catal. Surv. Asia, 10, 40-54 (2006).   DOI
4 S. D. Kim, E. K. Kim, H. R. Kim, Y. P. Lee, J. H. Park, S. H. Byun, H. J. Seo, and S. H. Lee, Estimation of emission factor (residual rate) and inventory of HFC-134a from mobile air conditioners of scrap vehicles, J. Korean Soc. Waste Manag., 29, 650-661 (2012).
5 H. J. Kwon, Clean air conservation act related to refrigeration and air conditioning equipment, Korean Int. J. Air-Cond. Refrig. Eng., 43, 18-29 (2014).
6 C. D. Thompson, E. G. Robertson, and D. McNaughton, High-resolution FTIR spectroscopy of chlorodifluoromethane: v2 and v7, Chem. Phys. 279, 239-248 (2002).   DOI
7 T.-H. Kim, S. Choi, and D.-W. Park, Numerical simulation on the influence of water spray in thermal plasma treatment of $CF_4$ gas, Curr. Appl. Phys., 12, 509-514 (2012).   DOI
8 K. Yanagisawa, T. Kozawa, A. Onda, M. Kanazawa, J. Shinohara, T. Takanami, and Mshiraishi, A novel decomposition technique of friable asbestos by $CHClF_2$-decomposed acidic gas, J. Hazard. Mater., 163, 593-599 (2009).   DOI
9 M. Jasinski, P. Szczucki, M. Dors, J. Mizeraczyk, M. Lubanski, and Z. Zakrzewski, Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma, Czechoslov. J. Phys., 50, 285-288 (2000).
10 H. W. Park, Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge, PhD Dissertation, Inha University, Incheon, Korea (2015).
11 G. J. M. Velders, S. O. Andersen, J. S. Daniel, D. W. Fahey, and M. McFarland, The importance of the Montreal Protocol in protecting climate, Proc. Natl. Acad. Sci. U.S.A., 104, 4814-4819 (2007).   DOI
12 R. T. Deam, A. R. Dayal, T. McAllister, A. E. Mundy, R. J. Western, L. M. Besley, A. J. D. Farmer, E. C. Horrigan, and A. B. Murphy, Interconversion of chlorofluorocarbons in plasmas, J. Chem. Soc. Chem. Commun., 3, 347-348 (1995).
13 J.-H. Lee, S. M. Hwang, D. W. Lee, and G. S. Heo, Determination of volatile organic compounds (VOCs) using tedlar bag/solid-phasemicroextraction/gas chromatography/mass spectrometry (SPME/GC/MS) in ambient and workplace air, Bull. Korean Chem. Soc., 23, 488-496 (2002).   DOI
14 B. R. Miller, R. F. Weiss, P. K. Salameh, T. Tanhua, B. R. Greally, J. Muhle, and P. G. Simmonds, Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80, 1536-1545 (2008)   DOI
15 A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, Atmospheric lifetimes of long-lived halogenated species, Science, 259, 194-199 (1993).   DOI
16 A. McCullocha and A. A. Lindley, Global emissions of HFC-23 estimated to year 2015, Atmos. Environ., 41, 1560-1566 (2007).   DOI
17 I. Halonen, J. Tarhanen, T. Kopsa, J. Palonen, H. Vilokki, and J. Ruuskanen, Formation of polychlorinated dioxins and dibenzofurans in incineration of refuse derived fuel and biosludge, Chemosphere, 26, 1869-1880 (1993).   DOI
18 A. Steiner, A. R. Ravishankara, and M. Molina, HFCs: A Critical Link in Protecting Climate and the Ozone Layer, pp. 13-26, United Nations Environment Programme (UNEP) Synthesis Report (2011).
19 H. Huang and A. Buekensl, On the mechanisms of dioxin formation in combustion processes, Chemosphere, 32, 4099-4117 (1995).
20 Y. H. Kim, S. H. Jun, and C. G. Shin, Study on optimal treatment of waste gas, National Institute of Environmental Research, South Korea, 9-120 (2013).