• Title/Summary/Keyword: plasma spray

Search Result 337, Processing Time 0.03 seconds

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

Effect of Heat Treatment of powder on the Tribological Behavior of the Plasma Sprayed Zirconia Coating (분말 열처리가 지르코니아 용사코팅층의 마모특성에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.298-303
    • /
    • 2000
  • The 3 mol% yttria stabilized zirconia (3-Y PSZ) powder was heat treated at 50 0$^{\circ}C$ to evaporate the polymer binder and stabilize the tetragonal phase. The wear experiments were carried out on a ring-on-plate type reciprocating wear tester at selected temperatures with in the range room temperature to 600$^{\circ}C$ The results show that the heat treatment of powder decreases the wear rate due to the reduction of microcracks and pores in coatings and the stabilization of the tetragonal phase. Powder heat treatment enhanced the quality of the coating layer by removing remnant gases during coating process and the powder heat treatment at which tetragonal phase is stable diminished phase ratio of monoclinic. These two effects improved wear resistance characters.

  • PDF

Tribological Behavior of Thermally Sprayed Nano Composite Chromium Carbide (크로뮴 카바이드 나노 분말을 이용한 용사코팅 층의 내마모 특성에 관한 연구)

  • 이정엽;신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.42-48
    • /
    • 2001
  • Chromium carbides have the excellent wear properties as transition metal carbides. Their tribological applications were studied recently. The nano-sized ceramic could enhance the mechanical and electronical properties of materials. In this study, it was observed to test the wear of the coated surface of nano-sized chromium carbides. The nano-sized chromium carbides were produced by sol-gel processing. Coating surface of produced powders was obtained front plasma spraying. Wear test of coating surface was held increasing temperature. The friction coefficient and the wear loss were testified in dry environment. And the worn surfaces were analyzed by XRD and SEM.

  • PDF

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

ENHANCED BIOAVAILABILITY OF NIFEDIPINE USING COATED DRY ELIXIR

  • Park, Jae-Yoon;Kim, Chong-Kook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.282-282
    • /
    • 1996
  • The purpose of this study was to prepare the nifedipine dry elixir (NDE) and coated nifedipine dry elixir (CNDE) containing nifedipine ethanol solution for improving the dissolution rate and bioavailability of nifedipine. NDE containing nifedipine and ethanol in wall materials of dextrin was prepared using a spray-dryer and then NDE was coated with eudragit acrylic resin to make CNDE. Shape and size of the NDE and CNDE were monitored by scanning electron micrograph and laser particle size analyzer In vitro dissolution tests were performed in simulated gastric and intestinal fluid. Bioavailability of NDE and CNDE were compared with drug powder suspension and commercial soft capsule after oral administration of the preparations to rats. NDE and CNDE are spherical in shape. Cross-sectional view of dry elixirs indicates the large inter cavity containing ethanolic drug solution in shell. Geometric mean diameter of NDE and CNDE is about 6.64 and 8.70 $\mu\textrm{m}$, respectively. Drug dissolution rate within first 5 min from NDE increased dramatically irrespective of dissolution medium. However, CNDE showed a particularly retarded dissolution rate in pH 1.2 simulated gastric fluid compared with NDE. The bioavailability of nifedipine in the NDE was increased dramatically compared with drug powder suspension. CNDE reduced initial burst-out plasma peak compared with NDE. CNDE as a sustained release delivery system could reduce the initial burst-out plasma peak due to controlling the release rate of nifedipine from NDE and maintain the effective plasma level over a longer period within therapeutic window with enhanced bioavailability of nifedipine.

  • PDF

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

A Study on High Temperature Fracture Behavior of Plasma Sprayed Zirconia/ NiCrAlY Coating System (지르코니아 /NiCrAlY 계 플라즈마 용사피막의 고온 파괴거동에 관한 연구)

  • Kim, Yeon-Jik;Im, Jae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3234-3242
    • /
    • 1996
  • This paper describes experimental results of modified small punch( MSP) test conducted to evaluate the fracure characteristics and mechanical properties of plasma sparayed zirconia ($ZrO_2$ stabilized with 8wt. % $Y_20_3$ : YSZ) NiCrAlY composite. The mixing ratios of YSZ/NiCrAlY were 0/100, 25/75, 50/50, 100/0 v.%. Test temperatures ranged from 293K to 1473K. This study is directed at development of thermal barrrier coating(TBC) system with superior heat resistance and mechanical properties. The microstructure and fracture process of the composite were examined by SEM and AE method. The mechanical properties of 100% YSZ were nearly independent of the temperatures tested in this study. In contrast, the NiCrAlY-containing composites showed a significant decrease of the mechanical properties above 1273K, showing a ductile- brittle transition behavior up to the temperature. Furthermore, it can seen that 25% YSZ/75% NiCrAlY composite gave the highest fracure strength and fracture energy among the mixing ratio tested over the temperature range.

A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method (방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성)

  • Lee, Han-Chan;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.

A Study on Plasma Sprayed Porous Super Austenitic Stainless Steel Coating for Improvement of Bone Ingrowth (Bone ingrowth 향상을 위해 플라즈마 용사된 초내식성 오스테나이트 스테인리스강의 다공성 코팅층에 대한 연구)

  • 오근택;박용수
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 1996
  • The cementless fixation of bone ingrowth by porous coatings on artificial hip joint prostheses are replacing polymethylmethacrylate(PMMA) bone cement fixations. However, the major interests in the field of porous metal coating are environmental corrosivity accelerated by metal ion release, deterioration in the mechanical property of the coating, and the mechanical failure of the coatings as well as the substrate. Therefore, the selection of right materials for coatings and the development of porous coating techniques must be accomplished. Because of the existing problems in Ti and Ti alloys which are used extensively, this study is focused on the plasma spraying technique for coating on super stainless steel substrate. In order to determine the optimum conditions which satisfy the requirement for the porous coatings, under the plasma spraying, we selected the experimental parameters which extensively influenced on the characteristics of the coating through the pre-examination. Spray distance has been selected among 120, 160, and 200mm and primary gas flow rate among 70, 100, and 130 SCFH. Current and secondary gas($H_2$) flow rate was fixed at 400A, and 15 SCFH respectively. To understand the characteristics of the coatings, surface morphology, cross-sectional micro-structure, surface roughness, residual stress, and corrosion resistance were elucidated and the best conditions for the bone ingrowth improvement on artificial hip joint prostheses were found.

  • PDF

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.